#' Distribution Statistics for Zero-Truncated Negative Binomial
#'
#' @family Binomial
#' @family Negative Binomial
#' @family Distribution Statistics
#'
#' @author Steven P. Sanderson II, MPH
#'
#' @details This function computes statistics for a zero-truncated negative
#' binomial distribution.
#'
#' @description Computes distribution statistics for a zero-truncated negative
#' binomial distribution.
#'
#' @param .data The data from a zero-truncated negative binomial distribution.
#'
#' @examples
#' library(dplyr)
#'
#' tidy_zero_truncated_negative_binomial(.size = 1, .prob = 0.1) |>
#' util_zero_truncated_negative_binomial_stats_tbl() |>
#' glimpse()
#'
#'
#' @return A tibble with distribution statistics.
#'
#' @name util_zero_truncated_negative_binomial_stats_tbl
NULL
#' @export
#' @rdname util_zero_truncated_negative_binomial_stats_tbl
util_zero_truncated_negative_binomial_stats_tbl <- function(.data) {
# Immediate check for tidy_ distribution function
if (!"tibble_type" %in% names(attributes(.data))) {
rlang::abort(
message = "You must pass data from the 'tidy_dist' function.",
use_cli_format = TRUE
)
}
if (attributes(.data)$tibble_type != "tidy_zero_truncated_negative_binomial") {
rlang::abort(
message = "You must use 'tidy_zero_truncated_negative_binomial()'",
use_cli_format = TRUE
)
}
# Extract parameters from data
data_tbl <- dplyr::as_tibble(.data)
atb <- attributes(data_tbl)
r <- atb$.size
p <- atb$.prob
# Compute statistics
mean_val <- (p * r) / (1 - p)
mode_val <- ifelse(r > 1, floor((p * (r - 1)) / (1 - p)), 0)
var_val <- (p * r) / ((1 - p)^2)
sd_val <- sqrt(var_val)
skewness_val <- (1 + p) / sqrt(p * r)
kurtosis_val <- 6 / r + ((1 - p)^2) / (p * r)
# Create tibble of distribution statistics
ret <- dplyr::tibble(
tidy_function = atb$tibble_type,
function_call = atb$dist_with_params,
distribution = dist_type_extractor(atb$tibble_type),
distribution_type = atb$distribution_family_type,
points = atb$.n,
simulations = atb$.num_sims,
mean = mean_val,
mode_lower = mode_val,
range = "1 to Inf",
std_dv = sd_val,
coeff_var = var_val / mean_val,
skewness = skewness_val,
kurtosis = kurtosis_val,
computed_std_skew = tidy_skewness_vec(data_tbl$y),
computed_std_kurt = tidy_kurtosis_vec(data_tbl$y),
ci_lo = ci_lo(data_tbl$y),
ci_hi = ci_hi(data_tbl$y)
)
# Return the tibble with distribution statistics
return(ret)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.