Description Usage Arguments Details Value Examples
Asymptotic variance (times n
) of the estimator for mu
or sigmasq
for the univariate normal on a general domain assuming the other parameter is known.
1 |
mu |
A number, the true |
sigmasq |
A number, the true |
mode |
A string, the class of the |
param1 |
A number, the first parameter to the |
param2 |
A number, the second parameter (may be optional depending on |
est_mu |
A boolean. If |
domain |
A list returned from |
tol |
A positive number, tolerance for numerical integration. Defaults to |
The estimates may be off from the empirical variance, or may even be Inf
or NaN
if "mode"
is one of "cosh"
, "exp"
, and "sinh")
as the functions grow too fast.
If est_mu == TRUE
, the function numerically calculates
E[σ^2h(X)^2+σ^4hp(X)^2]/E[h(X)]^2,
and if est_mu == FALSE
, the function numerically calculates
E[(2σ^6h(X)^2+σ^8hp(X)^2)(X-μ)^2]/E[h(X)(X-μ)^2]^2,
where E is the expectation over the true distribution TN(μ,σ) of X.
A number, the asymptotic variance.
1 2 | varhat(0, 1, "min_log_pow", 1, 1, TRUE, make_domain("R+", 1))
varhat(0.5, 4, "min_pow", 1, 1, TRUE, make_domain("R+", 1))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.