Threshold estimates derived from data108 using Bayesian inference and Hamiltonian Monte Carlo.
1 |
A data frame with 13 rows and 16 colums.
Inter-click interval in ms, Note: -1 is for sessions with no lead click
Threshold estimate first 10 days, i.e., stimulus level at 75 % corrrect responses. The estimate is the mode of the posterior distribution
Lower 95 estimates from the first 10 days
Upper 95 estimates from the first 10 days
Threshold estimate last 10 days, i.e., stimulus level at 75 % corrrect responses. The estimate is the mode of the posterior distribution
Lower 95 % Highest posterior density interval for threshold estimates from the last 10 days
Upper 95 % Highest posterior density interval for threshold estimates from the last 10 days
Threshold difference last 10 - first 10 dyas. The estimate is the mode of the posterior distribution of threshold differences
Lower 95 % Highest posterior density interval for threshold difference
Upper 95 % Highest posterior density interval for threshold difference
Spread of psychometric function. The estimate is the mode of the posterior distribution
Lapse rate (parameter lambda) of psychometric function. The estimate is the mode of the posterior distribution
Lapse rate (parameter lambda) of psychometric function for first 10 days. The estimate is the mode of the posterior distribution
Lapse rate (parameter lambda) of psychometric function for last 10 days. The estimate is the mode of the posterior distribution
Diagnostics: The minimum n_eff value for the estimated parameters (high values are good)
Diagnostics: The maximum Rhat value for the estimated parameters (values should be very close to 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.