prepost_stan: Processed data from experiment ALEXIS 108. For creating...

Description Usage Format

Description

Threshold estimates derived from data108 using Bayesian inference and Hamiltonian Monte Carlo.

Usage

1

Format

A data frame with 13 rows and 16 colums.

ici

Inter-click interval in ms, Note: -1 is for sessions with no lead click

thmode_pre

Threshold estimate first 10 days, i.e., stimulus level at 75 % corrrect responses. The estimate is the mode of the posterior distribution

hdi95pre_lo

Lower 95 estimates from the first 10 days

hdi95pre_hi

Upper 95 estimates from the first 10 days

thmode_post

Threshold estimate last 10 days, i.e., stimulus level at 75 % corrrect responses. The estimate is the mode of the posterior distribution

hdi95pre_lo

Lower 95 % Highest posterior density interval for threshold estimates from the last 10 days

hdi95pre_hi

Upper 95 % Highest posterior density interval for threshold estimates from the last 10 days

thdiff

Threshold difference last 10 - first 10 dyas. The estimate is the mode of the posterior distribution of threshold differences

hdi95diff_lo

Lower 95 % Highest posterior density interval for threshold difference

hdi95diff_hi

Upper 95 % Highest posterior density interval for threshold difference

wmode_pre

Spread of psychometric function. The estimate is the mode of the posterior distribution

wmode_post

Lapse rate (parameter lambda) of psychometric function. The estimate is the mode of the posterior distribution

lapsemdn_pre

Lapse rate (parameter lambda) of psychometric function for first 10 days. The estimate is the mode of the posterior distribution

lapsemdn_post

Lapse rate (parameter lambda) of psychometric function for last 10 days. The estimate is the mode of the posterior distribution

min_neff

Diagnostics: The minimum n_eff value for the estimated parameters (high values are good)

maxR

Diagnostics: The maximum Rhat value for the estimated parameters (values should be very close to 1)


stamnosslin/alexis108 documentation built on May 23, 2019, 4:06 a.m.