dnn | R Documentation |
Fit a deep learning model.
dnn(
x_train,
y_train,
levels = 4,
max_units = 256,
dropout_rate = 0.1,
start = 0
)
x_train |
a |
y_train |
a |
levels |
a |
max_units |
a |
dropout_rate |
a |
start |
a |
An Keras fitted model.
model |
The fitted Keras fitted model. |
Tian, Y. and Feng, Y., 2021(a). RaSE: A variable screening framework via random subspace ensembles. Journal of the American Statistical Association, (just-accepted), pp.1-30.
Tian, Y. and Feng, Y., 2021(b). RaSE: Random subspace ensemble classification. Journal of Machine Learning Research, 22(45), pp.1-93.
Zhu, J. and Feng, Y., 2021. Super RaSE: Super Random Subspace Ensemble Classification. https://www.preprints.org/manuscript/202110.0042
Chen, J. and Chen, Z., 2008. Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), pp.759-771.
Chen, J. and Chen, Z., 2012. Extended BIC for small-n-large-P sparse GLM. Statistica Sinica, pp.555-574.
Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory, 1973 (pp. 267-281). Akademiai Kaido.
Schwarz, G., 1978. Estimating the dimension of a model. The annals of statistics, 6(2), pp.461-464.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.