standardize | R Documentation |
Standardizes the columns of a high-dimensional design matrix to mean zero and unit Euclidean norm.
standardize(X)
X |
A design matrix to be standardized. |
Performs a location and scale transform to the columns of the original
design matrix, so that the resulting design matrix with p
-dimensional
observations \{x_i : i=1,...,n\}
of the form
x_i=(x_{i1},x_{i2},...,x_{ip})
satisfies \sum_{i=1}^{n} x_{ij} =
0
and \sum_{i=1}^{n} x_{ij}^{2} = 1
for j=1,...,p
.
A design matrix with standardized predictors or columns.
Jianqing Fan, Yang Feng, Diego Franco Saldana, Richard Samworth, and Yichao Wu
Diego Franco Saldana and Yang Feng (2018) SIS: An R package for Sure Independence Screening in Ultrahigh Dimensional Statistical Models, Journal of Statistical Software, 83, 2, 1-25.
## Not run:
set.seed(0)
n <- 400
p <- 50
rho <- 0.5
corrmat <- diag(rep(1 - rho, p)) + matrix(rho, p, p)
corrmat[, 4] <- sqrt(rho)
corrmat[4, ] <- sqrt(rho)
corrmat[4, 4] <- 1
corrmat[, 5] <- 0
corrmat[5, ] <- 0
corrmat[5, 5] <- 1
cholmat <- chol(corrmat)
x <- matrix(rnorm(n * p, mean = 15, sd = 9), n, p)
x <- x %*% cholmat
x.standard <- standardize(x)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.