knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" ) # Copy reference/images to man/images # reference folder is required to work with pkgdown if (!dir.exists("man/figures")) {dir.create("man/figures")} file.copy(list.files("reference/figures", full.names = TRUE), "man/figures", overwrite = TRUE)
This is package {tweetrbot}: Functions for a Twitter bot.
Current version is 0.0.1
The list of dependencies required to install this package is: {dplyr}, {knitr}, {magrittr}, {rmarkdown}, {rtweet}.
To install the package, you can run the following script
# install.packages("remotes") remotes::install_github(repo = "statnmap/tweetrbot")
knitr::include_graphics(path = "reference/figures/fig_tweetrbot_with_func.png")
library(tweetrbot)
This package is presented in a blog post on https://statnmap.com/2019-08-30-create-a-twitter-bot-on-a-raspberry-pi-3-using-r
This is set for a bot. This means that every tweets retrieved from get_and_store()
will be retweeted using retweet_and_update()
using a loop, with 1 tweet every 600 seconds here. Set to debug=TRUE
to avoid really tweeting on Twitter if you want to make some tests.
## Retrieve tweets, store on the drive get_and_store(query = "#rspatial", n_tweets = 20, dir = ".") ## Tweet regularly and update the table stored on the drive retweet_and_update(dir = ".", n_tweets = 20, n_limit = 3, sys_sleep = 600, debug = TRUE)
rds_file <- system.file("complete_tweets_rspatial.rds", package = "tweetrbot") all_tweets <- readRDS(rds_file) all_tweets
get_account_info(user = "talk_rspatial")
Get the database gathered with get_and_store()
and tweet the top of the month using top_tweets()
.
rds_file <- system.file("complete_tweets_rspatial.rds", package = "tweetrbot") all_tweets <- readRDS(rds_file) # filter on last month last_month_tweets <- all_tweets %>% filter_month(the_month = 4, the_year = 2020) # update last month last_month_updated <- update_data( path = rds_file, statuses = last_month_tweets$status_id) # Get stats of last month tweets top_tweets(all_tweets = last_month_updated, post_tweet = TRUE, top_number = 5)
output <- all_tweets %>% filter_month(the_month = 4, the_year = 2020) %>% top_tweets(post_tweet = FALSE, top_number = 5) output$number_tweets output$number_contributors
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.