pois_mean_GG: Solve Gaussian approximation to Poisson mean problem

View source: R/EB_poisson_mean_routines.R

pois_mean_GGR Documentation

Solve Gaussian approximation to Poisson mean problem

Description

Gaussian prior, Gaussian posterior in Poisson mean problem.

Usage

pois_mean_GG(
  x,
  s = NULL,
  prior_mean = NULL,
  prior_var = NULL,
  optim_method = "L-BFGS-B",
  maxiter = 1000,
  tol = 1e-05
)

Arguments

x

data vector

s

scaling vector

prior_mean

prior mean

prior_var

prior variance

optim_method

optimization method in 'optim' function

maxiter

max number of iterations

tol

tolerance for stopping the updates

w

prior weights

Details

The problem is

x_i\sim Poisson(\exp(\mu_i)),

\mu_i\sim N(\beta,\sigma^2).

Value

a list of

posteriorMean:

posterior mean

posteriorVar:

posterior variance

obj_value:

objective function values

prior_mean:

prior mean

prior_var:

prior variance

@example n=300 x = rpois(n,exp(2*sin(1:n/20))) naive=pois_mean_GG(x) prior_base= pois_mean_GG(x, prior_mean = 2*sin(1:n/20), prior_var=rep(1, length(n))) plot(prior_base$posterior$posteriorMean_latent, col="green", type="l") lines(naive$posterior$posteriorMean_latent) points(2*sin(1:n/20), pch=19)


stephenslab/susiF.alpha documentation built on June 11, 2025, 1:09 p.m.