Step 3: Connect to the database

I'll report on global bike sales from our company's database


Establishing a connection

# Getting data
library("RODBC")

# Manipulating data
library("data.table")

# Build a connection to the DB for reuse
# Driver names can vary eg 
# {ODBC Driver 11 for SQL Server}
azure <- odbcDriverConnect(
          "Driver={SQL Server Native Client 11.0};
          Server=mhknbn2kdz.database.windows.net;
          Database=AdventureWorks2012;
          Uid=sqlfamily;
          Pwd=sqlf@m1ly;")

Getting our starting data

Order    <- data.table( sqlQuery( azure, 
         "SELECT * FROM [Sales].[SalesOrderHeader]"))

Territory<- data.table( sqlQuery( azure, 
         "SELECT * FROM [Sales].[SalesTerritory]"))

Region   <- data.table( sqlQuery( azure, 
         "SELECT * FROM [Person].[CountryRegion]"))
if(azure!=-1L){
Order    <- data.table( sqlQuery( azure, 
         "SELECT * FROM [Sales].[SalesOrderHeader]"))

Territory<- data.table( sqlQuery( azure, 
         "SELECT * FROM [Sales].[SalesTerritory]"))

Region   <- data.table( sqlQuery( azure, 
         "SELECT * FROM [Person].[CountryRegion]"))
}
#Some error handling for if generating purely offline
if(azure==-1L){
library(data.table)
Order<-fread(system.file("extdata","Order.csv",package = "Rtraining"))
Region<-fread(system.file("extdata","Region.csv",package = "Rtraining"))
Territory<-fread(system.file("extdata","Territory.csv",package = "Rtraining"))
}


stephlocke/Rtraining documentation built on May 30, 2019, 3:36 p.m.