library(ingestr) library(ggplot2) # library(readr) # library(dplyr) # library(lubridate) # library(rsofun)
The library gee_subset
by Koen Hufkens can be downloaded from this link and used to extract data directly from Google Earth Engine. Note that this requires the following programmes to be available:
Then, carry out the follwing steps:
To get access to using the Google Earth Engine API (required to use the `gee_subset` library), carry out the following steps in your terminal. This follows steps described [here](https://github.com/google/earthengine-api/issues/27). 1. Install google API Python client ```{sh, eval = FALSE} sudo pip install --upgrade google-api-python-client
I had an error and first had to do this here following this link: ```{sh, eval = FALSE} sudo pip install --ignore-installed six
2. Install pyCrypto ```{sh, eval = FALSE} sudo pip install pyCrypto --upgrade
4. Run authentification for GEE ```{sh, eval = FALSE} earthengine authenticate
### Download data To facilitate the selection of data products and bands to be downloaded, you may use the function `get_settings_gee()` which defines defaults for different data bundles (`c("modis_fpar", "modis_evi", "modis_lai", "modis_gpp")` are available). We use `"modis_evi"`, downloading the MODIS/006/MOD13Q1, band EVI data. The following example is for downloading MODIS EVI data. ```r settings_gee <- get_settings_gee( bundle = "modis_evi", python_path = system("which python", intern = TRUE), gee_path = "~/google_earth_engine_subsets/gee_subset/", data_path = "~/data/gee_subsets/", method_interpol = "linear", keep = TRUE, overwrite_raw = FALSE, overwrite_interpol= TRUE )
This can now be used to download the data to the directory specified by argument data_path
of function get_settings_gee()
.
df_gee_modis_fpar <- ingest_bysite( sitename = "CH-Lae", source = "gee", year_start= 2010, year_end = 2012, lon = 8.365, lat = 47.4781, settings = settings_gee, verbose = FALSE )
Plot this data.
plot_fapar_ingestr_bysite(df_gee_modis_fpar, settings_gee)
Using the same settings as specified above, we can download MODIS FPAR data for multiple sites at once from GEE:
settings_gee <- get_settings_gee( bundle = "modis_evi", python_path = system("which python", intern = TRUE), gee_path = "~/google_earth_engine_subsets/gee_subset/", data_path = "~/data/gee_subsets/", method_interpol = "linear", keep = TRUE, overwrite_raw = FALSE, overwrite_interpol= TRUE ) df_gee_modis_evi <- ingest( siteinfo= ingestr::siteinfo %>% dplyr::filter(!(sitename %in% c("AU-GWW", "AU-Lox", "AU-Rob", "AU-TTE", "CN-Dan"))), source = "gee", settings= settings_gee, verbose = FALSE ) df <- df_gee_modis_evi %>% unnest(data) %>% dplyr::select(sitename, date, evi = modisvar_interpol) ## quick check df %>% dplyr::filter(sitename == "AR-SLu") %>% ggplot(aes(x = date, y = evi)) + geom_line() write_csv( df, path = "~/data/fluxnet_subsets/EVI_MOD13Q1_gee_subset.csv" )
Collect all plots.
list_gg <- plot_fapar_ingestr(df_gee_modis_fpar, settings_gee) #purrr::map(list_gg, ~print(.))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.