MeshesIntersection | R Documentation |
Computes the intersection of the given meshes.
MeshesIntersection( meshes, clean = FALSE, normals = FALSE, numbersType = "double" )
meshes |
a list of triangular meshes, each given as a list with
(at least) two fields: |
clean |
Boolean, whether to clean the input meshes (merging duplicated vertices, duplicated faces, removed isolated vertices) as well as the output mesh |
normals |
Boolean, whether to return the per-vertex normals of the output mesh |
numbersType |
the type of the numbers used in C++ for the
computations; must be one of |
A triangular mesh given as a list with fields vertices
,
faces
, edges
, exteriorEdges
, gmpvertices
if numberTypes="gmp"
, and normals
if normals=TRUE
.
library(RCGAL) library(rgl) # mesh one: truncated icosahedron; one has to triangulate it mesh1 <- Mesh( truncatedIcosahedron[["vertices"]], truncatedIcosahedron[["faces"]], triangulate = TRUE, normals = FALSE ) # mesh two: a cube; one also has to triangulate it cube <- translate3d( # (from the rgl package) cube3d(), 2, 0, 0 ) vertices <- t(cube$vb[-4L, ]) faces <- t(cube$ib) mesh2 <- Mesh(vertices, faces, triangulate = TRUE, normals = FALSE) # compute the intersection inter <- MeshesIntersection(list(mesh1, mesh2)) # plot rglmesh1 <- tmesh3d( vertices = t(mesh1[["vertices"]]), indices = t(mesh1[["faces"]]), homogeneous = FALSE ) rglinter <- tmesh3d( vertices = t(inter[["vertices"]]), indices = t(inter[["faces"]]), homogeneous = FALSE ) open3d(windowRect = c(50, 50, 562, 562)) shade3d(rglmesh1, color = "yellow", alpha = 0.2) shade3d(cube, color = "cyan", alpha = 0.2) shade3d(rglinter, color = "red") plotEdges( vertices = inter[["vertices"]], edges = inter[["exteriorEdges"]], edgesAsTubes = FALSE, lwd = 3, verticesAsSpheres = FALSE ) # other example, with 'gmp' rational numbers #### library(RCGAL) library(gmp) library(rgl) cube <- cube3d() vertices <- t(cube$vb[-4L, ]) faces <- t(cube$ib) rglmesh1 <- cube mesh1 <- Mesh(vertices, faces, triangulate = TRUE, normals = FALSE) mesh1$vertices <- as.bigq(mesh1$vertices) rotMatrix <- t(cbind( # pi/3 around a great diagonal as.bigq(c(2, -1, 2), c(3, 3, 3)), as.bigq(c(2, 2, -1), c(3, 3, 3)), as.bigq(c(-1, 2, 2), c(3, 3, 3)) )) mesh2 <- Mesh(vertices, faces, triangulate = TRUE, normals = FALSE) mesh2$vertices <- as.bigq(vertices) %*% rotMatrix rglmesh2 <- rotate3d(cube, pi/3, 1, 1, 1) inter <- MeshesIntersection(list(mesh1, mesh2), numbersType = "gmp") # perfect vertices: inter[["vertices"]] rglinter <- tmesh3d( vertices = t(inter[["vertices"]]), indices = t(inter[["faces"]]), homogeneous = FALSE ) open3d(windowRect = c(50, 50, 562, 562), zoom = 0.9) bg3d("#363940") shade3d(rglmesh1, color = "yellow", alpha = 0.2) shade3d(rglmesh2, color = "orange", alpha = 0.2) shade3d(rglinter, color = "hotpink") plotEdges( inter[["vertices"]], inter[["exteriorEdges"]], only = inter[["exteriorVertices"]], color = "firebrick", tubesRadius = 0.05, spheresRadius = 0.07 )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.