Interne Funktionen um Formel und Daten für Evaluationen vorzubereiten. Die daten werden dabei ins tibble-Format konvertiert und angeforderte Transformationen ausgeführt.
dat <- data.frame(
sex = 1:2,
treatment = 1:2,
m1 = 1:2, m2 = 1:2, m3 = 1:2, m4 = 1:2, m5 = 1:2, m6 = 1:2
)
x <- stp25formula::prepare_data2( ~ m1 + m2 + m3 + m4, dat)
str(x)
#> List of 14
#> $ data : tibble [2 x 4] (S3: tbl_df/tbl/data.frame)
#> ..$ m1: int [1:2] 1 2
#> ..$ m2: int [1:2] 1 2
#> ..$ m3: int [1:2] 1 2
#> ..$ m4: int [1:2] 1 2
#> ..- attr(*, "terms")=Classes 'terms', 'formula' language ~m1 + m2 + m3 + m4
#> .. .. ..- attr(*, "variables")= language list(m1, m2, m3, m4)
#> .. .. ..- attr(*, "factors")= int [1:4, 1:4] 1 0 0 0 0 1 0 0 0 0 ...
#> .. .. .. ..- attr(*, "dimnames")=List of 2
#> .. .. .. .. ..$ : chr [1:4] "m1" "m2" "m3" "m4"
#> .. .. .. .. ..$ : chr [1:4] "m1" "m2" "m3" "m4"
#> .. .. ..- attr(*, "term.labels")= chr [1:4] "m1" "m2" "m3" "m4"
#> .. .. ..- attr(*, "order")= int [1:4] 1 1 1 1
#> .. .. ..- attr(*, "intercept")= int 1
#> .. .. ..- attr(*, "response")= int 0
#> .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#> .. .. ..- attr(*, "predvars")= language list(m1, m2, m3, m4)
#> .. .. ..- attr(*, "dataClasses")= Named chr [1:4] "numeric" "numeric" "numeric" "numeric"
#> .. .. .. ..- attr(*, "names")= chr [1:4] "m1" "m2" "m3" "m4"
#> $ measure.vars : chr [1:4] "m1" "m2" "m3" "m4"
#> $ group.vars : NULL
#> $ condition.vars : NULL
#> $ formula :Class 'formula' language ~m1 + m2 + m3 + m4
#> .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
#> $ by : chr "1"
#> $ measure : Named chr [1:4] "integer" "integer" "integer" "integer"
#> ..- attr(*, "names")= chr [1:4] "m1" "m2" "m3" "m4"
#> $ row_name : Named chr [1:4] "m1" "m2" "m3" "m4"
#> ..- attr(*, "names")= chr [1:4] "m1" "m2" "m3" "m4"
#> $ col_name : Named chr(0)
#> ..- attr(*, "names")= chr(0)
#> $ measure.class : Named chr [1:4] "integer" "integer" "integer" "integer"
#> ..- attr(*, "names")= chr [1:4] "m1" "m2" "m3" "m4"
#> $ group.class : NULL
#> $ condition.class: NULL
#> $ digits : Named num [1:4] 2 2 2 2
#> ..- attr(*, "names")= chr [1:4] "m1" "m2" "m3" "m4"
#> $ N : int 2
#> - attr(*, "class")= chr [1:2] "stp25data" "list"
prepare_data2(dat, 2:5)
#>
#> formula: ~treatment + m1 + m2 + m3
#> <environment: 0x0000000014e628c8>
#>
#> measure.vars: treatment, m1, m2, m3
#> measure: integer, integer, integer, integer
#> measure.class: integer, integer, integer, integer
#> digits: 2, 2, 2, 2
#> row_name: treatment, m1, m2, m3
#> by: [1] "1"
#>
#> group.vars:
#> # A tibble: 2 x 4
#> treatment m1 m2 m3
#> <int> <int> <int> <int>
#> 1 1 1 1 1
#> 2 2 2 2 2
prepare_data2(dat, m1, m2, m3)
#>
#> formula: ~m1 + m2 + m3
#> <environment: 0x000000001388dde0>
#>
#> measure.vars: m1, m2, m3
#> measure: integer, integer, integer
#> measure.class: integer, integer, integer
#> digits: 2, 2, 2
#> row_name: m1, m2, m3
#> by: [1] "1"
#>
#> group.vars:
#> # A tibble: 2 x 3
#> m1 m2 m3
#> <int> <int> <int>
#> 1 1 1 1
#> 2 2 2 2
Lokal transformieren. Interne Evaluation mit stats::model.frame die Variablen Namen bleiben aber so erhalten wie sie im orinalem data.frame waren.
prepare_data2(~ log(m1) + m2 + m3 + m4, dat)
#>
#> formula: ~log(m1) + m2 + m3 + m4
#>
#> measure.vars: m1, m2, m3, m4
#> measure: integer, integer, integer, integer
#> measure.class: integer, integer, integer, integer
#> digits: 2, 2, 2, 2
#> row_name: m1, m2, m3, m4
#> by: [1] "1"
#>
#> group.vars:
#> # A tibble: 2 x 4
#> m1 m2 m3 m4
#> <dbl> <int> <int> <int>
#> 1 0 1 1 1
#> 2 0.693 2 2 2
Metainformation wie digits und Berechnungsmethoden bereitstellen
prepare_data2( ~ m1[1] + m2 + m3[4, median] + m4, dat)
#>
#> formula: ~m1 + m2 + m3 + m4
#> <environment: 0x000000001662a470>
#>
#> measure.vars: m1, m2, m3, m4
#> measure: integer, integer, median, integer
#> measure.class: integer, integer, integer, integer
#> digits: 1, 2, 4, 2
#> row_name: m1, m2, m3, m4
#> by: [1] "1"
#>
#> group.vars:
#> # A tibble: 2 x 4
#> m1 m2 m3 m4
#> <int> <int> <int> <int>
#> 1 1 1 1 1
#> 2 2 2 2 2
prepare_data2(dat, m1[1, freq], m2[2, mean], m3[3, median])
#>
#> formula: ~m1 + m2 + m3
#> <environment: 0x000000001584da80>
#>
#> measure.vars: m1, m2, m3
#> measure: freq, mean, median
#> measure.class: integer, integer, integer
#> digits: 1, 2, 3
#> row_name: m1, m2, m3
#> by: [1] "1"
#>
#> group.vars:
#> # A tibble: 2 x 3
#> m1 m2 m3
#> <int> <int> <int>
#> 1 1 1 1
#> 2 2 2 2
Gruppierung
prepare_data2(m1 ~ sex, dat)
#>
#> formula: m1 ~ sex
#>
#> measure.vars: m1
#> measure: integer
#> measure.class: integer
#> digits: 2
#> row_name: m1
#> by: ~sex
#> <environment: 0x0000000012d8fdb8>
#>
#> group.vars: sex
#> # A tibble: 2 x 2
#> m1 sex
#> <int> <int>
#> 1 1 1
#> 2 2 2
prepare_data2(dat, m1, by = ~ sex, )
#>
#> formula: m1 ~ sex
#> <environment: 0x000000001c466418>
#>
#> measure.vars: m1
#> measure: integer
#> measure.class: integer
#> digits: 2
#> row_name: m1
#> by: ~sex
#> <environment: 0x000000001c477848>
#>
#> group.vars: sex
#> # A tibble: 2 x 2
#> m1 sex
#> <int> <int>
#> 1 1 1
#> 2 2 2
x <- prepare_data2(m1 ~ sex | treatment, dat)
x
#>
#> formula: m1 ~ sex
#>
#> measure.vars: m1
#> measure: integer
#> measure.class: integer
#> digits: 2
#> row_name: m1
#> by: ~sex
#> <environment: 0x000000001c8020b8>
#>
#> group.vars: sex
#> # A tibble: 2 x 3
#> m1 sex treatment
#> <int> <int> <int>
#> 1 1 1 1
#> 2 2 2 2
x$condition.vars
#> [1] "treatment"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.