# # require(magrittr)
# # require(tidyverse)
# require(stp25plot)
# # #devtools::install_github("NightingaleHealth/ggforestplot")
# # require(stp25tools)
# require(ggplot2)
#
# #library("extrafont")
# require(survival)
# #data(package = "survival", colon)
# colon<- stp25tools::Label(colon, sex="Geschlecht")
# #colon$sex <- factor(as.numeric(colon$sex), 0:1, c("male", "female"))
#
# fit1 <- lm(status ~ sex + rx + adhere, data = colon)
# fit2 <- lm(status ~ sex + rx* adhere, data = colon)
#
#
# A <- prepare_forest("Base Model" = fit1,
# fit2,
# include.referenze=FALES
# )
# A
#
# A <- prepare_forest( fit1 )
# library(broom.helpers)
# library(gtsummary)
# library(ggplot2)
# library(dplyr)
# model_logit <- glm(response ~ trt + grade, trial, family = binomial)
# broom::tidy(model_logit)
#
#
#
#
#
#
# model_get_n(fit1)
#
#
# fit1 <- lm(status ~ sex + rx + adhere -1, data = colon)
#
# tidy_forest <-
# fit1 |>
# # perform initial tidying of the model
# tidy_and_attach(exponentiate = F, conf.int = TRUE) |>
# # adding in the reference row for categorical variables
# tidy_add_reference_rows() |>
# # adding a reference value to appear in plot
# tidy_add_estimate_to_reference_rows() |>
# # adding the variable labels
# tidy_add_term_labels() |>
# # removing intercept estimate from model
# # tidy_remove_intercept() |>
# tidy_add_n()
#
# tidy_forest[c("reference_row","label", "n_obs",
# "estimate", #,"std.error","statistic",,"conf.low","conf.high"
# "p.value")]
#
# stp25stat2::Tbll_reg_long(fit1)
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.