get_title | R Documentation |
Get variable and value labels from ggeffects
-objects. Functions like
ggpredict()
or ggeffect()
save information on variable names and value
labels as additional attributes in the returned data frame. This is especially
helpful for labelled data (see sjlabelled), since these labels can be used
to set axis labels and titles.
get_title(x, case = NULL) get_x_title(x, case = NULL) get_y_title(x, case = NULL) get_legend_title(x, case = NULL) get_legend_labels(x, case = NULL) get_x_labels(x, case = NULL) get_complete_df(x, case = NULL)
x |
An object of class |
case |
Desired target case. Labels will automatically converted into the
specified character case. See |
The titles or labels as character string, or NULL
, if variables
had no labels; get_complete_df()
returns the input list x
as single data frame, where the grouping variable indicates the
predicted values for each term.
if (require("sjmisc", quietly = TRUE) && require("ggplot2", quietly = TRUE) && require("effects", quietly = TRUE)) { data(efc) efc$c172code <- to_factor(efc$c172code) fit <- lm(barthtot ~ c12hour + neg_c_7 + c161sex + c172code, data = efc) mydf <- ggpredict(fit, terms = c("c12hour", "c161sex", "c172code")) ggplot(mydf, aes(x = x, y = predicted, colour = group)) + stat_smooth(method = "lm") + facet_wrap(~facet, ncol = 2) + labs( x = get_x_title(mydf), y = get_y_title(mydf), colour = get_legend_title(mydf) ) # adjusted predictions, a list of data frames (one data frame per term) eff <- ggeffect(fit) eff get_complete_df(eff) # adjusted predictions for education only, and get x-axis-labels mydat <- eff[["c172code"]] ggplot(mydat, aes(x = x, y = predicted, group = group)) + stat_summary(fun = sum, geom = "line") + scale_x_discrete(labels = get_x_labels(mydat)) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.