A rewrite simplified version of "lm/summary.lm" function in R
Things you need to install beforehand so that this package can run smoothly
install.packages("Rcpp")
install.packages("RcppArmadillo")
# The safest way to install lmcpp is to download the package lmcpp.zip from GitHub, open the lmcpp.Rproj, and input the following command:
R CMD build lmcpp-master/
R CMD INSTALL lmcpp-master/
#load the package
library(lmcpp)
#load test data
data(mtcars)
#run a linear regression and
fit = lmcpp(mpg ~ cyl + hp, data = mtcars, prt = TRUE)
#>Call:
#>lmcpp(formula = mpg ~ cyl + hp, data = mtcars, prt = TRUE)
#>
#>Coeffiecients:
#>(Intercept) cyl hp
#> 36.9083305 -2.2646936 -0.0191217
#summarize the regression output
summ = summary.lmcpp(fit, correlation = TRUE, prt = TRUE)
#>Call:
#>lmcpp(formula = mpg ~ cyl + hp, data = mtcars)
#>
#>Residuals:
#> Min. 1st Qu. Median 3rd Qu. Max.
#>-4.49475 -2.49006 -0.18283 1.97768 7.29335
#>
#>Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#>(Intercept) 36.90833 2.19080 16.84698 0.00000
#>cyl -2.26469 0.57589 -3.93252 0.00048
#>hp -0.01912 0.01500 -1.27472 0.21253
#>
#>Residual standard erro:3.17 on 29 degrees of freedom
#>Multiple R-squared: 0.7407, Adjusted R-squared: 0.7228
#>F-statistic: 41.42 on 2 and 29 DF, p-value: 3.161781e-09
#>
#>Correlation of Coefficients:
#> (Intercept) cyl
#>cyl -0.79
#>hp 0.35 -0.83
This is the 1st version and might be the last version of lmcpp package.
This project is licensed under the MIT License - see the LICENSE.md file for details
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.