icp.torus.eval | R Documentation |
icp.torus.eval
evaluates whether each pre-specified evaluation point
is contained in the inductive conformal prediction sets for each given
level.
icp.torus.eval(icp.torus, level = 0.1, eval.point = grid.torus())
icp.torus |
an object containing all values to compute the conformity
score, which will be constructed with |
level |
either a scalar or a vector, or even |
eval.point |
N x N numeric matrix on [0, 2π)^2. Default input is
|
returns a cp
object with the boolean values which
indicate whether each evaluation point is contained in the inductive
conformal prediction sets for each given level.
Jung, S., Park, K., & Kim, B. (2021). Clustering on the torus by conformal prediction. The Annals of Applied Statistics, 15(4), 1583-1603.
grid.torus
, icp.torus
data <- toydata1[, 1:2] icp.torus <- icp.torus(data, model = "kmeans", mixturefitmethod = "general", J = 4, concentration = 25) icp.torus.eval(icp.torus, level = c(0.1, 0.08), eval.point = grid.torus())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.