uiDisease <- tabPanel(title = h4('Disease Analysis'),
value = 'disease-tab',
sidebarLayout(
sidebarPanel(id = 'sidebar',
width = 2
),
mainPanel(
box(height = 2500, width = 2000,
tabsetPanel(type = 'tabs',
tabPanel('Disease Enrichment',
hr(),
# print('Dot plot is similar to bar
# plot with the capability to encode another score as dot size.'),
shinycssloaders::withSpinner(
plotOutput('enr_dotplot'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px')
),
tabPanel('Disease GSEA',
hr(),
shinycssloaders::withSpinner(
plotOutput('enr_gseadotplot'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
)
),
tabPanel('Disease Heatmap',
hr(),
print('The heatmap can simplify the results making it easier to
identify expression patterns.'),
hr(),
shinycssloaders::withSpinner(
plotlyOutput('heatmapnrich'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px')
),
tabPanel('Disease density',
hr(),
print('The ridgeplot will visualize expression distributions
of core enriched genes for GSEA enriched categories.
It helps users to interpret up/down-regulated pathways.'),
hr(),
shinycssloaders::withSpinner(
plotOutput('enr_ridgeplot'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px')
),
tabPanel('Disease association',
hr(),
print('visualizing the complex association between genes and gene sets.
It emphasizes the gene overlapping among different gene sets.'),
hr(),
shinycssloaders::withSpinner(
plotOutput('upset'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
)
),
tabPanel('Circus Plot',
hr(),
shinycssloaders::withSpinner(
plotOutput('enr_circusplot'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
)
),
tabPanel('Disease Network',
hr(),
shinycssloaders::withSpinner(
plotOutput('enr_networkplot'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
)
),
tabPanel('Disease Map',
hr(),
print('Enrichment map organizes enriched terms into a network
with edges connecting overlapping gene sets. In this way,
mutually overlapping gene sets are tend to cluster together,
making it easy to identify functional module.'),
hr(),
shinycssloaders::withSpinner(
plotOutput('enr_mapplot'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
)
),
tabPanel('Disease Results Table',
br(),
shinycssloaders::withSpinner(
DT::dataTableOutput('diseaseTable'),
image = 'images/logoTransparentSmall.gif',
image.width = '200px'
),
downloadButton(
outputId = 'download_disease_table',
label = 'Download Table')
)
)
)
)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.