README.md

BaselineRegularization

Build Status codecov

Introduction

Installation

The package can be installed from github with

devtools::install_github("sverchkov/BaselineRegularization", build_vignettes = TRUE)

Tutorial

The R vignettes include a tutorial that covers most features of the package, these can be accessed with

browseVignettes("BaselineRegularization")

Example

# Load the package
library("BaselineRegularization")

# Connect to Database, e.g. postgres [1]
con <- DBI::dbConnect( RPostgreSQL::PostgreSQL()
                     , host = "localhost"
                     , user = "user"
                     , dbname = "omop_example"
                     , password = rstudioapi::askForPassword("Database Password") )

# Define the Event of interest
event = 4110956 # The concept_id for "Acute myocardial infarction NOS"

# Extract relevant data
br_data <- prepareBRData( con, response_event = event )

# Parametrize task
parameters <- defineBRParameters()

# Fit model
fit <- fitBaselineRegularization( br_data, parameters )

# Show results (beta coefficients)
getCoefficients( fit )

  1. See this guide for a more comprehensive overview of database connection. We use dplyr under the hood.

Technology

BaselineRegularization is an R package.

System Requirements

Requires R (version 3.0.0 or greater).

Dependencies

Always required:

Required for database access:

Required for building the documentation:

Required for testing:

License

BaselineRegularization is licensed under Apache License 2.0

Development

BaselineRegularization is being developed in R Studio.

We use the GitHub issue tracker for bugs and feature requests

References

Original papers describing the underlying algorithms:

OHDSI Symposium 2018 poster



sverchkov/BaselineRegularization documentation built on May 9, 2019, 1:26 p.m.