Description Usage Arguments Value References
Fit an empirical Bayes prior in the hierarchical model mu ~ G, X ~ N(mu, sigma^2)
| 1 | 
| X | a vector of observations | 
| sigma | noise estimate | 
| p | tuning parameter – number of parameters used to fit G | 
| nbin | tuning parameter – number of bins used for discrete approximation | 
| unif.fraction | tuning parameter – fraction of G modeled as "slab" | 
posterior density estimate g
For more details about "g-estimation", see: B Efron. Two modeling strategies for empirical Bayes estimation. Stat. Sci., 29(2): 285–301, 2014.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.