Description Usage Arguments Author(s) See Also Examples

These functions provide information about the Box-Cox
distribution with location parameter equal to `m`

, dispersion
equal to `s`

, and power transformation equal to `f`

: density,
cumulative distribution, quantiles, log hazard, and random generation.

The Box-Cox distribution has density

*
f(y) = 1/sqrt(2 pi s^2) exp(-((y^f/f - mu)^2/(2 s^2)))/
(1-I(f<0)-sign(f)*pnorm(0,m,sqrt(s)))*

where *m* is the location parameter of the distribution,
*s* is the dispersion, *f* is the family
parameter, *I()* is the indicator function, and *y>0*.

*f=1* gives a truncated normal distribution.

1 2 3 4 |

`y` |
vector of responses. |

`q` |
vector of quantiles. |

`p` |
vector of probabilities |

`n` |
number of values to generate |

`m` |
vector of location parameters. |

`s` |
vector of dispersion parameters. |

`f` |
vector of power parameters. |

`log` |
if TRUE, log probabilities are supplied. |

J.K. Lindsey

`dnorm`

for the normal or Gaussian distribution.

1 2 3 4 |

swihart/rmutil documentation built on May 29, 2018, 9:13 p.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.