knitr::opts_knit$set(root.dir = "/n/janson_lab/lab/sma/CRT_microbiome/", echo=FALSE) library(magrittr) library(ggplot2)
dir_output <- "/n/janson_lab/lab/sma/CRT_microbiome/results/dCRT_proof/" batchtools::loadRegistry(file.dir = "r_batchtools_reg/dCRT_proof/", writeable = FALSE) load(file = paste0(dir_output, "tb_job_testing.RData")) extract_p <- function(result) { beta_data <- result$fit_original_data$coef[2] beta_CR <- vapply(result$l_fit_random_data, function(i_result) i_result$coef[2], 0.0) list(p = 1 - mean(abs(beta_data) > abs(beta_CR), na.rm = TRUE), beta_data = beta_data, beta_CR = beta_CR) } # # tb_result <- tb_job %>% # dplyr::filter(i_job %in% batchtools::findDone()$job.id) # # l_results <- list() # l_summary <- list() # for(i_row in seq_len(nrow(tb_result))) { # if(i_row %% 20 == 0) print(i_row) # load(paste0(dir_output, "fit_", tb_result$i_job[i_row], ".RData")) # l_results[[i_row]] <- result_CRT # l_summary[[i_row]] <- extract_p(result_CRT) # } # tb_result <- tb_result %>% # dplyr::mutate( # summary = l_summary # ) %>% # dplyr::mutate( # p = summary %>% # purrr::map_dbl("p") # ) # save(tb_result, file = paste0(dir_output, "tb_result.RData")) load(paste0(dir_output, "tb_result.RData")) tb_result_distilled <- tb_result load("results/CRT_simulation/tb_result.RData") tb_result <- rbind( tb_result %>% dplyr::rename(p = p_min, summary = summary_min) %>% dplyr::mutate(method = "full") %>% dplyr::select(-p_1se, -summary_1se), tb_result_distilled %>% dplyr::mutate(method = "distilled") ) %>% dplyr::mutate(method = factor(method, levels = c("distilled", "full")))
features_TP <- tibble::tibble( mean = (1 - tb_result$params_x[[1]]$pi0) * exp(tb_result$params_x[[1]]$mu) ) %>% dplyr::mutate(feature = seq_len(dplyr::n())) %>% dplyr::arrange(-mean) %>% {.[c(1, 11), ]$feature} features_FP <- tibble::tibble( mean = (1 - tb_result$params_x[[1]]$pi0) * exp(tb_result$params_x[[1]]$mu) ) %>% dplyr::mutate(feature = seq_len(dplyr::n())) %>% dplyr::arrange(-mean) %>% {.[c(2, 12), ]$feature} tb_result %>% dplyr::mutate(feature = factor(feature_test, levels = c(features_TP, features_FP)), n = factor(n, levels = c(50, 100, 200))) %>% dplyr::filter(penalize_method == "ridge", sampling_method == "sequential") %>% ggplot(aes(x = n, y = p, color = method)) + geom_point(position = position_jitterdodge(jitter.width = 0.25), size = 3) + facet_grid(feature ~ signal_strength) + ggtitle("ridge fits") tb_result %>% dplyr::mutate(feature = factor(feature_test, levels = c(features_TP, features_FP)), n = factor(n, levels = c(50, 100, 200))) %>% dplyr::filter(penalize_method == "lasso", sampling_method == "sequential") %>% ggplot(aes(x = n, y = p, color = method)) + geom_point(position = position_jitterdodge(jitter.width = 0.25), size = 3) + facet_grid(feature ~ signal_strength) + ggtitle("lasso fits")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.