knitr::opts_chunk$set(echo = TRUE)
devtools::document() # devtools::install() pacman::p_load(tidyverse, recipes, tidyr, comperes, comperank)
load("gams_sub.Rdata") games <- gams_sub %>% filter(league_id == 82) %>% mutate_at(vars(game_id, contains("team_id")), as.integer) %>% select(-winner_team_id) %>% mutate(winner = case_when( local_team_score > visitor_team_score ~ 1, local_team_score == visitor_team_score ~ .5, local_team_score < visitor_team_score ~ 0, ) ) %>% rename(local_ft_score = local_team_score, visitor_ft_score = visitor_team_score) %>% mutate( local_ht_score = local_ft_score, visitor_ht_score = visitor_ft_score ) train <- games %>% filter(year < 2019) test <- games %>% filter(year > 2018)
devtools::document() rec <- recipe( ~ ., data = head(games)) %>% update_role(game_id, new_role = "ID") f2 <- learner$new(params = list(type = ""), task = "linear", backend = "soccerstats") f2$fit_pair(rec, na.omit(train[1:100,])) preds <- f2$predict_pair(test[1:100,], "w200") preds %>% glimpse preds$local_hft_score_diff_mean_w200
library(PlayerRatings) devtools::document() rec <- recipe(local_team_score + visitor_team_score ~ local_team_id + visitor_team_id + game_id, data = head(games)) %>% update_role(game_id, new_role = "ID") f2 <- learner$new(params = list(type = ""), task = "linear", backend = "PlayerRatings") f2$fit_pair(rec, na.omit(train[1:100,])) preds <- f2$predict_pair(test[1:100,], "w200") preds %>% glimpse
# devtools::install_github("echasnovski/comperank") #library(rlang) #library(comperank) # ncaa2005 # mat <- comperes::as_widecr(ncaa2005) devtools::document() rec <- recipe(local_team_score + visitor_team_score ~ local_team_id + visitor_team_id + game_id, data = head(games)) %>% update_role(game_id, new_role = "ID") f2 <- learner$new(params = list(type = ""), task = "linear", backend = "pi") f2$fit_pair(rec, na.omit(train[1:100,])) preds <- f2$predict_pair(test[1:100,], "w200") preds %>% glimpse piratings
# devtools::install_github("echasnovski/comperank") #library(rlang) #library(comperank) # ncaa2005 # mat <- comperes::as_widecr(ncaa2005) devtools::document() rec <- recipe(local_team_score + visitor_team_score ~ local_team_id + visitor_team_id + game_id, data = head(games)) %>% update_role(game_id, new_role = "ID") f2 <- learner$new(params = list(type = ""), task = "linear", backend = "comperank") f2$fit_pair(rec, na.omit(train[1:100,])) preds <- f2$predict_pair(test[1:100,], "w200") preds %>% glimpse
# devtools::install() devtools::document() rec <- recipe(local_team_score + visitor_team_score ~ local_team_id + visitor_team_id + game_id, data = head(games)) %>% update_role(game_id, new_role = "ID") # f1 <- fit_learner(rec, games, params = NULL, task = "linear", backend = "goalmodel") f2 <- learner$new(params = list(type = "pois"), task = "linear", backend = "goalmodel") f2$fit_pair(rec, na.omit(train[1:100,])) preds <- f2$predict_pair(test[1:100,], "w200") preds
# devtools::install() devtools::document() rec <- recipe(local_team_score + visitor_team_score ~ local_team_id + visitor_team_id + game_id, data = head(games)) %>% update_role(game_id, new_role = "ID") # f1 <- fit_learner(rec, games, params = NULL, task = "linear", backend = "goalmodel") f2 <- learner$new(params = list(init = 1500, k = 30), task = "linear", backend = "elo") f2$fit_pair(rec, train[1:100,]) preds <- f2$predict_pair(test[3,], "w200") f2$predict_pair(test[4,], "w200") preds
# devtools::install_github("mskogholt/fastNaiveBayes") library(fastNaiveBayes) devtools::document() rec <- games %>% head() %>% recipe(local_team_score + visitor_team_score ~ local_team_id + visitor_team_id + game_id, data = .) %>% recipes::update_role(game_id, new_role = "ID") f3 <- learner$new(params = list(some = ""), task = "linear", backend = "fastnb") f3$fit_pair(rec, train) preds <- f3$predict_pair(test, "w200") preds %>% count(fnb_score_event_diff_teamscore_w200) f3$meta preds$fnb_ft_winner_teamscore_w200 %>% hist # rec <- df %>% # recipes::recipe(y ~ local_team_id + visitor_team_id, data = head(.)) %>% # recipes::step_dummy(local_team_id, visitor_team_id) %>% # recipes::prep(training = df, retain = T) # # x <- recipes::juice(rec) %>% # dplyr::select(-y) train %>% count(visitor_team_id)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.