title_string <- paste0(target_name,"に於ける",report_theme,"")
r title_string
の推定土地単価の推移r title_string
の取引動向を概観するため、
回帰分析曲線(モデルは出力メッセージ参照)、及び、各事例の描画を行うと以下の通りとなります。
\hspace{1cm}
pre_target_data %>% mutate(q_label = retiex::style_quarter_date(t_date)) %>% ggplot() + geom_smooth(mapping = aes(x = t_date, y = assumption_land_unit_price)) + geom_jitter(mapping = aes(x = t_date, y = assumption_land_unit_price, color = q_label), alpha = 0.5) + ggtitle(paste0(title_string,"の推定土地単価に関する動向")) + scale_y_continuous(labels = function(v){ retiex::style_yen(v, 0, "円/㎡") }) + xlab(label = "取引時点(四半期毎)") + ylab(label = "推定土地単価") + theme(legend.position = "none")
\newpage
###################################################### # 四半期毎の集計データの作成 ###################################################### table_summary <- target_data %>% retiex::retiex_summary_of_alup(building_unit_cost,building_durability) %>% retiex::add_change_rate_diff_cols() %>% dplyr::transmute(`取引時点` = retiex::style_quarter_date(date), `平均` = retiex::style_yen(mean, 0, "円/㎡"), `平均の増減比` = retiex::style_percent(crd_mean, keta = 1, diff = T), `中央値` = retiex::style_yen(median, 0, "円/㎡"), `中央値の増減比` = retiex::style_percent(crd_median, keta = 1, diff = T), `事例数` = format(count, scientific = F, big.mark = ","), `事例数の増減比` = retiex::style_percent(crd_count, keta = 1, diff = T), `標準偏差` = retiex::style_yen(sd, 0, "円/㎡"), `最小値` = retiex::style_yen(min, 0, "円/㎡"), `第1四分位` = retiex::style_yen(qu1, 0, "円/㎡"), `第3四分位` = retiex::style_yen(qu3, 0, "円/㎡"), `最大値` = retiex::style_yen(max, 0, "円/㎡"), ) %>% dplyr::arrange(desc(`取引時点`)) ###################################################### # 表の表示 ###################################################### table_summary %>% kableExtra::kbl(booktabs = T, align = "r", caption = stringr::str_c(title_string, "の推定土地単価に関する各種数値")) %>% kableExtra::add_header_above(c(" ", "平均" = 2, "中央値" = 2, "事例件数" = 2)) %>% kableExtra::kable_styling(latex_options = c("striped", "scale_down", "hold_position"))
\hspace{1cm}
# 平均を含むデータ mean_data <- pre_target_data %>% dplyr::mutate(q_date = factor(retiex::style_quarter_date(t_date))) %>% dplyr::group_by(q_date) %>% dplyr::summarise(m = mean(assumption_land_unit_price)) # 箱ひげ プラス 平均ラインの上書き pre_target_data %>% dplyr::mutate(q_date = factor(retiex::style_quarter_date(t_date))) %>% ggplot() + geom_boxplot(mapping = aes(x = q_date, y = assumption_land_unit_price), varwidth = TRUE) + #平均表示の重ね書き geom_point(data = mean_data, mapping = aes(x = q_date, y = m), color = "red", shape = 4) + geom_line(data = mean_data, mapping = aes(x = q_date, y = m, group = 1), color = "blue") + # 以下は同じ処理 ggtitle(paste0(title_string,"の推定土地単価の推移"))+ scale_y_continuous(labels = function(v){ retiex::style_yen(v, 0, "円/㎡") }) + xlab(label = "取引時点") + ylab(label = "推定土地単価") + theme(axis.text.x = element_text(angle = 40, hjust = 1))
\newpage
# バイオリンプロット pre_target_data %>% dplyr::mutate(q_date = factor(retiex::style_quarter_date(t_date))) %>% ggplot() + geom_violin(mapping = aes(x = q_date, y = assumption_land_unit_price))+ ggtitle(paste0(title_string,"の推定土地単価の分布"))+ scale_y_continuous(labels = function(v){ retiex::style_yen(v, 0, "円/㎡") }) + xlab(label = "取引時点") + ylab(label = "推定土地単価") + theme(axis.text.x = element_text(angle = 40, hjust = 1))
\hspace{1cm}
# 増減比の折れ線グラフ target_data %>% retiex::retiex_summary_of_alup(building_unit_cost,building_durability) %>% retiex::add_change_rate_diff_cols() %>% dplyr::mutate(q_date = factor(retiex::style_quarter_date(date))) %>% dplyr::group_by(q_date) %>% ggplot() + geom_line(mapping = aes(x = q_date, y = crd_mean, group = 1), color = "red") + geom_hline(yintercept = 0) + # 以下は同じ処理 ggtitle(paste0(title_string,"の推定土地単価平均の増減比"))+ xlab(label = "取引時点") + ylab(label = "増減比") + scale_y_continuous(labels = function(v){ retiex::style_percent(v, 1, T) }) + theme(axis.text.x = element_text(angle = 40, hjust = 1))
\newpage
###################################################### # 四半期毎の集計データの作成 ###################################################### table_summary <- target_data %>% retiex::retiex_rolling_summary_of_alup(building_unit_cost,building_durability) %>% retiex::add_change_rate_diff_cols() %>% dplyr::transmute(`取引時点` = retiex::style_rolling_term_quarter(date), `平均` = retiex::style_yen(mean, 0, "円/㎡"), `平均の増減比` = retiex::style_percent(crd_mean, keta = 1, diff = T), `中央値` = retiex::style_yen(median, 0, "円/㎡"), `中央値の増減比` = retiex::style_percent(crd_median, keta = 1, diff = T), `事例数` = format(count, scientific = F, big.mark = ","), `事例数の増減比` = retiex::style_percent(crd_count, keta = 1, diff = T), `標準偏差` = retiex::style_yen(sd, 0, "円/㎡"), `最小値` = retiex::style_yen(min, 0, "円/㎡"), `第1四分位` = retiex::style_yen(qu1, 0, "円/㎡"), `第3四分位` = retiex::style_yen(qu3, 0, "円/㎡"), `最大値` = retiex::style_yen(max, 0, "円/㎡"), ) %>% dplyr::arrange(desc(`取引時点`)) ###################################################### # 表の表示 ###################################################### table_summary %>% kableExtra::kbl(booktabs = T, align = "r", caption = stringr::str_c(title_string, "の各種数値")) %>% kableExtra::add_header_above(c(" ", "平均" = 2, "中央値" = 2, "事例件数" = 2)) %>% kableExtra::kable_styling(latex_options = c("striped", "scale_down", "hold_position"))
\hspace{1cm}
# 平均を含むデータ mean_data <- target_data %>% retiex::retiex_rolling_summary_of_alup(building_unit_cost,building_durability) %>% dplyr::mutate(factor_date = factor(retiex::style_rolling_term_quarter(date))) # 箱ひげ プラス 平均ラインの上書き pre_target_data %>% retiex::transform_quarter_rolling_format(t_date) %>% dplyr::mutate(factor_date = factor(retiex::style_rolling_term_quarter(roll_label))) %>% ggplot() + geom_boxplot(mapping = aes(x = factor_date, y = assumption_land_unit_price), varwidth = TRUE) + #平均表示の重ね書き geom_point(data = mean_data, mapping = aes(x = factor_date, y = mean), color = "red", shape = 4) + geom_line(data = mean_data, mapping = aes(x = factor_date, y = mean, group = 1), color = "blue") + # 以下は同じ処理 ggtitle(paste0(title_string,"の推定土地単価の推移"))+ xlab(label = "取引時点") + ylab(label = "推定土地単価") + scale_y_continuous(labels = function(v){ retiex::style_yen(v, 0, "円/㎡") }) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
\newpage
# バイオリンプロット pre_target_data %>% retiex::transform_quarter_rolling_format(t_date) %>% dplyr::mutate(factor_date = factor(retiex::style_rolling_term_quarter(roll_label))) %>% ggplot() + geom_violin(mapping = aes(x = factor_date, y = assumption_land_unit_price))+ ggtitle(paste0(title_string,"の推定土地単価の分布"))+ xlab(label = "取引時点") + ylab(label = "推定土地単価") + scale_y_continuous(labels = function(v){ retiex::style_yen(v, 0, "円/㎡") }) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
\hspace{1cm}
target_data %>% retiex::retiex_rolling_summary_of_alup(building_unit_cost,building_durability) %>% retiex::add_change_rate_diff_cols() %>% dplyr::mutate(q_date = factor(retiex::style_rolling_term_quarter(date))) %>% ggplot() + geom_line(mapping = aes(x = q_date, y = crd_mean, group = 1), color = "red") + geom_hline(yintercept = 0) + # 以下は同じ処理 ggtitle(paste0(title_string,"の推定土地単価の移動平均の増減比"))+ xlab(label = "取引時点") + ylab(label = "増減比") + scale_y_continuous(labels = function(v){ retiex::style_percent(v, 1, T) }) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
\newpage
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.