run.all.lms: Function that will run a regression for your variable of...

Description Usage Arguments Value Examples

View source: R/run.all.lms.R

Description

Function that will run a regression for your variable of interest across all genes, in parallel. Adapted from Vamsee (github.com/vkp3/pillalamarRi)

Usage

1
2
run.all.lms(tx_expr, cov, gene.ids, SCORE, omit.outlier = T,
  num.cores = 10)

Arguments

tx_expr

Expression matrix in form: [genes x samples]. Will be converted to a list(!) of gene-expr vectors (if not input as list)

cov

Regression covariates [cov x samples]

gene.ids

Character vector of gene IDs, corresponding to rows in 'tx_expr' [genes x samples]

SCORE

Main covariate to be permuted (not included in 'cov')

omit.outlier

Whether or not you want to omit gene expression outliers

num.cores

The number of cores you would like to use

Value

All regression coefficients for lm(gene expression ~ SCORE + cov) for all genes

Examples

1
lm_res.sort <- run.all.lms(my.list[[1]], my.list[[2]], my.list[[3]], my.list[[4]], omit.outlier = T, num.cores = 10)

syyang93/analyzeR documentation built on Aug. 26, 2020, 4:34 p.m.