knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE, fig.align = 'center') knitr::opts_knit$set(root.dir = "/mnt/raid5/Personal/tangchao/project/Nanopore/BarcodeDecomplex") knitr::opts_knit$set(base.dir = "/mnt/raid5/Personal/tangchao/project/Nanopore/BarcodeDecomplex")
library(caret) library(pbapply) library(parallel) library(multiROC) library(doParallel) library(data.table)
library(doParallel) cl <- makePSOCKcluster(20) registerDoParallel(cl)
load("./analysis/11.Classifiers/01.ModelingData/Barcode_4.RData") rm(list = c("TrainingReads", "TestReads", "TestData")); gc()
set.seed(123) TrainingData <- as.data.table(TrainingData)[, .SD[sort(sample(.N, 10000))], Class]
fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 10)
set.seed(825) naive_bayes <- train(Class ~ ., data = TrainingData, preProc = c("center", "scale", "YeoJohnson", "nzv"), method = "naive_bayes", trControl = fitControl, verbose = FALSE, tuneLength = 10, metric = "Accuracy", allowParallel = TRUE) saveRDS(naive_bayes, file = paste0("./analysis/12.AlgorithmComparison/Version1/01.Models/NB_B4.Rds"))
set.seed(825) rf <- train(Class ~ ., data = TrainingData, preProc = c("center", "scale", "YeoJohnson", "nzv"), method = "rf", trControl = fitControl, verbose = FALSE, tuneLength = 10, metric = "Accuracy", allowParallel = TRUE) saveRDS(rf, file = paste0("./analysis/12.AlgorithmComparison/Version1/01.Models/RF_B4.Rds"))
set.seed(825) pcaNNet <- train(Class ~ ., data = TrainingData, preProc = c("center", "scale", "YeoJohnson", "nzv"), method = "pcaNNet", trControl = fitControl, verbose = FALSE, metric = "Accuracy", allowParallel = TRUE) saveRDS(pcaNNet, file = paste0("./analysis/12.AlgorithmComparison/Version1/01.Models/NNet_B4.Rds"))
set.seed(825) knn <- train(Class ~ ., data = TrainingData, method = "knn", tuneLength = 6, trControl = fitControl) saveRDS(knn, file = paste0("./analysis/12.AlgorithmComparison/Version1/01.Models/KNN_B4.Rds"))
set.seed(825) CART <- train(Class ~ ., data = TrainingData, method = "treebag", trControl = fitControl) saveRDS(CART, file = paste0("./analysis/12.AlgorithmComparison/Version1/01.Models/CART_B4.Rds"))
set.seed(825) AdaBoost <- train(Class ~ ., data = TrainingData, method = "AdaBoost.M1", trControl = fitControl) saveRDS(AdaBoost, file = paste0("./analysis/12.AlgorithmComparison/Version1/01.Models/AdaBoost_B4.Rds"))
stopCluster(cl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.