Description Usage Arguments Details Value See Also Examples
Learn the parameters of a BN object according to a BNDataset using MAP (Maximum A Posteriori) estimation.
1 2 3 4 | learn.params(bn, dataset, ess = 1, use.imputed.data = F)
## S4 method for signature 'BN,BNDataset'
learn.params(bn, dataset, ess = 1, use.imputed.data = FALSE)
|
bn |
a |
dataset |
a |
ess |
Equivalent Sample Size value. |
use.imputed.data |
use imputed data. |
Parameter learning is not possible in case of networks learnt using the mmpc
algorithm,
or from bootstrap samples, as there may be loops.
new BN
object with conditional probabilities.
learn.network
1 2 3 4 5 6 7 8 | ## Not run:
## first create a BN and learn its structure from a dataset
dataset <- BNDataset("file.header", "file.data")
bn <- BN(dataset)
bn <- learn.structure(bn, dataset)
bn <- learn.params(bn, dataset, ess=1)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.