View source: R/build_run_modify.R
xmuValues | R Documentation |
For models to be estimated, it is essential that path values start at credible values.
xmuValues
takes on that task for you.
xmuValues(obj = NA, sd = NA, n = 1, onlyTouchZeros = FALSE)
obj |
The RAM or matrix |
sd |
Optional Standard Deviation for start values |
n |
Optional Mean for start values |
onlyTouchZeros |
Don't alter parameters that have starts (useful to speed |
xmuValues can set start values for the free parameters in both RAM and Matrix OpenMx::mxModel()
s.
It can also take an mxMatrix as input.
It tries to be smart in guessing starts from the values in your data and the model type.
note: If you give xmuValues a numeric input, it will use obj as the mean, and return a list of length n, with sd = sd.
OpenMx::mxModel()
with updated start values
Core functions:
Other Advanced Model Building Functions:
umx
,
umxAlgebra()
,
umxFixAll()
,
umxJiggle()
,
umxRun()
,
umxThresholdMatrix()
,
umxUnexplainedCausalNexus()
,
xmuLabel()
## Not run:
require(umx)
data(demoOneFactor)
latents = c("G")
manifests = names(demoOneFactor)
# ====================================================================
# = Make an OpenMx model (which will lack start values and labels..) =
# ====================================================================
m1 = mxModel("One Factor", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxPath(from = latents , to = manifests),
mxPath(from = manifests, arrows = 2),
mxPath(from = latents , arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov", numObs=500)
)
mxEval(S, m1) # default variances are jiggled away from near-zero
# Add start values to the model
m1 = xmuValues(m1)
mxEval(S, m1) # plausible variances
umx_print(mxEval(S,m1), 3, zero.print = ".") # plausible variances
xmuValues(14, sd = 1, n = 10) # Return vector of length 10, with mean 14 and sd 1
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.