xmu_describe_data_WLS | R Documentation |
Given either a data.frame or raw mxData
, this function determines whether OpenMx::mxFitFunctionWLS()
will generate expectations for means.
xmu_describe_data_WLS(
data,
allContinuousMethod = c("cumulants", "marginals"),
verbose = FALSE
)
data |
The raw data being used in a |
allContinuousMethod |
the method used to process data when all columns are continuous (default = "cumulants") |
verbose |
Whether or not to report diagnostics. |
All-continuous models processed using the "cumulants" method LACK means, while all continuous processed with allContinuousMethod = "marginals" will HAVE means.
When data are not all continuous, means are modeled and allContinuousMethod
is ignored.
list describing the data.
OpenMx::mxFitFunctionWLS()
, OpenMx::omxAugmentDataWithWLSSummary()
Other xmu internal not for end user:
umxModel()
,
umxRenameMatrix()
,
umx_APA_pval()
,
umx_fun_mean_sd()
,
umx_get_bracket_addresses()
,
umx_make()
,
umx_standardize()
,
umx_string_to_algebra()
,
xmuHasSquareBrackets()
,
xmuLabel_MATRIX_Model()
,
xmuLabel_Matrix()
,
xmuLabel_RAM_Model()
,
xmuMI()
,
xmuMakeDeviationThresholdsMatrices()
,
xmuMakeOneHeadedPathsFromPathList()
,
xmuMakeTwoHeadedPathsFromPathList()
,
xmuMaxLevels()
,
xmuMinLevels()
,
xmuPropagateLabels()
,
xmuRAM2Ordinal()
,
xmuTwinSuper_Continuous()
,
xmuTwinSuper_NoBinary()
,
xmuTwinUpgradeMeansToCovariateModel()
,
xmu_CI_merge()
,
xmu_CI_stash()
,
xmu_DF_to_mxData_TypeCov()
,
xmu_PadAndPruneForDefVars()
,
xmu_bracket_address2rclabel()
,
xmu_cell_is_on()
,
xmu_check_levels_identical()
,
xmu_check_needs_means()
,
xmu_check_variance()
,
xmu_clean_label()
,
xmu_data_missing()
,
xmu_data_swap_a_block()
,
xmu_dot_make_paths()
,
xmu_dot_make_residuals()
,
xmu_dot_maker()
,
xmu_dot_move_ranks()
,
xmu_dot_rank_str()
,
xmu_extract_column()
,
xmu_get_CI()
,
xmu_lavaan_process_group()
,
xmu_make_TwinSuperModel()
,
xmu_make_bin_cont_pair_data()
,
xmu_make_mxData()
,
xmu_match.arg()
,
xmu_name_from_lavaan_str()
,
xmu_path2twin()
,
xmu_path_regex()
,
xmu_print_algebras()
,
xmu_rclabel_2_bracket_address()
,
xmu_relevel_factors()
,
xmu_safe_run_summary()
,
xmu_set_sep_from_suffix()
,
xmu_show_fit_or_comparison()
,
xmu_simplex_corner()
,
xmu_standardize_ACE()
,
xmu_standardize_ACEcov()
,
xmu_standardize_ACEv()
,
xmu_standardize_CP()
,
xmu_standardize_IP()
,
xmu_standardize_RAM()
,
xmu_standardize_SexLim()
,
xmu_standardize_Simplex()
,
xmu_start_value_list()
,
xmu_starts()
,
xmu_summary_RAM_group_parameters()
,
xmu_twin_add_WeightMatrices()
,
xmu_twin_check()
,
xmu_twin_get_var_names()
,
xmu_twin_make_def_means_mats_and_alg()
,
xmu_twin_upgrade_selDvs2SelVars()
# ====================================
# = All continuous, data.frame input =
# ====================================
tmp =xmu_describe_data_WLS(mtcars, allContinuousMethod= "cumulants", verbose = TRUE)
tmp$hasMeans # FALSE - no means with cumulants
tmp =xmu_describe_data_WLS(mtcars, allContinuousMethod= "marginals")
tmp$hasMeans # TRUE we get means with marginals
# ==========================
# = mxData object as input =
# ==========================
tmp = mxData(mtcars, type="raw")
xmu_describe_data_WLS(tmp, allContinuousMethod= "cumulants", verbose = TRUE)$hasMeans # FALSE
xmu_describe_data_WLS(tmp, allContinuousMethod= "marginals")$hasMeans # TRUE
# =======================================
# = One var is a factor: Means modeled =
# =======================================
tmp = mtcars
tmp$cyl = factor(tmp$cyl)
xmu_describe_data_WLS(tmp, allContinuousMethod= "cumulants")$hasMeans # TRUE - always has means
xmu_describe_data_WLS(tmp, allContinuousMethod= "marginals")$hasMeans # TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.