library(tidyverse)
## Seleccionar variables para curso y poner nombres en español
casas_f <- read_csv("data/housing/data_train.csv") %>%
select(id = Id, tipo_zona = MSZoning, frente_lote = LotFrontage,
area_lote = LotArea,
calle = Street, forma_lote = LotShape,
nombre_zona = Neighborhood,
tipo_edificio = BldgType, estilo = HouseStyle,
calidad_gral = OverallQual,
condicion_gral = OverallCond,
año_construccion = YearBuilt,
calidad_exteriores = ExterQual,
material_exteriores = Exterior1st,
condicion_exteriores = ExterCond,
calidad_sotano = BsmtQual,
condicion_sotano = BsmtCond,
tipo_sotano = BsmtFinType1,
area_sotano = TotalBsmtSF,
calefaccion = Heating,
calidad_calefaccion = HeatingQC,
aire_acondicionado = CentralAir,
area_1er_piso = `1stFlrSF`,
area_2o_piso = `2ndFlrSF`,
area_habitable_sup = GrLivArea,
baños_completos = FullBath,
baños_medios = HalfBath,
recamaras_sup = BedroomAbvGr,
calidad_cocina = KitchenQual,
cuartos_sup = TotRmsAbvGrd,
tipo_garage = GarageType,
terminado_garage = GarageFinish,
num_coches = GarageCars,
area_garage = GarageArea,
calidad_garage = GarageQual,
condicion_garage = GarageCond,
valor_misc = MiscVal,
año_venta = YrSold,
mes_venta = MoSold,
tipo_venta = SaleType,
condicion_venta = SaleCondition,
precio = SalePrice)
pos <- read_csv("data/housing/geo_neighborhoods.csv") %>%
rename(nombre_zona = Neighborhood)
casas_f <- left_join(casas_f, pos, by = "nombre_zona")
# metros cuadrados y miles de dólares
m2 <- 0.092903
casas_f <- casas_f %>% mutate(area_sotano_m2 = area_sotano * m2,
area_1er_piso_m2 = area_1er_piso * m2,
area_2o_piso_m2 = area_2o_piso * m2,
area_habitable_sup_m2 = area_habitable_sup * m2,
area_garage_m2 = area_garage * m2,
area_lote_m2 = area_lote * m2) %>%
select(-area_sotano, -area_1er_piso, -area_2o_piso, -area_habitable_sup,
-area_garage, -area_lote) %>%
mutate(precio_miles = precio / 1000, valor_misc_miles = valor_misc / 1000) %>%
select(-precio, -valor_misc) %>%
mutate(precio_m2_miles = precio_miles / area_habitable_sup_m2)
casas <- casas_f %>% group_by(nombre_zona) %>%
mutate(n_casos = n()) %>%
filter(n_casos > 20) %>% select(-n_casos) %>% ungroup
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.