knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
devtools::load_all("~/Git/tidy-info-stats/")
devtools::load_all("~/Git/classifier-result/")
library(standardPrintOutput)
theme_set(standardPrintOutput::defaultFigureLayout())

standard plots

creating a classifier simulation

devtools::load_all("~/Git/tidy-info-stats/")
devtools::load_all("~/Git/classifier-result/")


cd2 = ConditionalDistribution$new()
cd2$withDistribution(KumaraswamyDistribution$new(mode=0.4,iqr=0.3),"class 1",1)
cd2$withDistribution(MirroredKumaraswamyDistribution$new(mode=0.6,iqr=0.3),"class 2",2)

cd2$plot(xmin=0,xmax=1)

crSim = ClassifierResult$fromConditionalDistribution(cd2)
crSim$setPositive("class 2")
crSim$maxValue(accuracy)
crSim$plotRoc()
crSim$plotDensity()
devtools::load_all("~/Git/tidy-info-stats/")
devtools::load_all("~/Git/classifier-result/")

genSim = function(mode1, iqr1, mode2, iqr2, prevalence) {
  cd2 = ConditionalDistribution$new()
  cd2$withDistribution(KumaraswamyDistribution$new(mode=mode1,iqr=iqr1),"negative",1-prevalence)
  cd2$withDistribution(MirroredKumaraswamyDistribution$new(mode=mode2,iqr=iqr2),"positive",prevalence)
  crSim = ClassifierResult$fromConditionalDistribution(cd2)$setPositive("positive")
  return(crSim)
}

tmp = genSim(mode1=0.1,iqr1=0.1,mode2=0.8,iqr2=0.3,prevalence=0.1)

compare = ClassifierComparison$new()

paramSets = list(
  list(mode1=0.1,iqr1=0.1,mode2=0.8,iqr2=0.3,prevalence=0.1),
  list(mode1=0.2,iqr1=0.2,mode2=0.6,iqr2=0.2,prevalence=0.1),
  list(mode1=0.4,iqr1=0.1,mode2=0.6,iqr2=0.3,prevalence=0.1),
  list(mode1=0.3,iqr1=0.05,mode2=0.9,iqr2=0.1,prevalence=0.1)
)

invisible(sapply(paramSets, function(l) {compare$withResult(parameterList = l, do.call(genSim,l))}))

compare$compareDistributionStats()
compare$plotRocs()

compare$classifiers[[1]]$result$plotDensity()


terminological/classifier-result documentation built on March 14, 2020, 8:04 a.m.