knitr::opts_chunk$set(echo = TRUE)
Euler–Mascheroni constant ($\lambda$)
$\lambda = 0.577215664901532$
N.B. for integers:
$digamma(M) = harmonic(M-1) - \lambda$
$harmonic(N) \approx log(N) + \lambda + 1/(2N) - 1/(12N^2)$
digamma2 = function(m) { n = m-1 log(n)+1/(2*n)-1/(12*n^2) }
First 10 terms of:
$harmonic(N) \approx log(N) + \lambda + 1/(2N) - \sum_{k=1}^{\infty} \frac{B_2k}{2kn^{2k}}$
B2k = c(1/6,-1/30,1/42,-1/30,5/66,-691/2730,7/6,-3617/510, 43867/798, -174611/330) k = c(1:10) digamma10 = function(m) { n = m-1 log(n)+1/(2*n)-sapply(n,function(n) sum(B2k/(2*k*n^(2*k)))) }
Deltas between first 60 using the 10 term estimate using R digamma function
n = c(2:60) digamma10(n)-base::digamma(n)
And using the 2 term estimate
digamma2(n)-base::digamma(n)
In conclusion 2 term estimate if pretty good after 50 terms.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.