Simple Principal Components Analysis (PCA; see vignette("pca")
) and
(Multiple) Correspondence Analysis (CA) based on the Singular Value
Decomposition (SVD). This package provides S4 classes and methods to
compute, extract, summarize and visualize results of multivariate data
analysis. It also includes methods for partial bootstrap validation.
There are many very good packages for multivariate data analysis (such as FactoMineR, ade4, vegan or ca, all extended by FactoExtra). dimensio is designed to be as simple as possible, providing all the necessary tools to explore the results of the analysis.
To cite dimensio in publications use:
Frerebeau N (2025). dimensio: Multivariate Data Analysis. Université Bordeaux Montaigne, Pessac, France. https://doi.org/10.5281/zenodo.4478530, R package version 0.11.0, https://packages.tesselle.org/dimensio/.
This package is a part of the tesselle project https://www.tesselle.org.
You can install the released version of dimensio from CRAN with:
install.packages("dimensio")
And the development version from GitHub with:
# install.packages("remotes")
remotes::install_github("tesselle/dimensio")
## Load package
library(dimensio)
## Load data
data(iris)
## Compute PCA
X <- pca(iris, center = TRUE, scale = TRUE, sup_quali = "Species")
dimensio provides several methods to extract the results:
get_data()
returns the original data.get_contributions()
returns the contributions to the definition of
the principal dimensions.get_coordinates()
returns the principal or standard coordinates.get_correlations()
returns the correlations between variables and
dimensions.get_cos2()
returns the cos2 values (i.e. the quality of
the representation of the points on the factor map).get_eigenvalues()
returns the eigenvalues, the percentages of
variance and the cumulative percentages of variance.The package allows to quickly visualize the results:
biplot()
produces a biplot.screeplot()
produces a scree plot.viz_rows()
/viz_individuals()
displays row/individual principal
coordinates.viz_columns()
/viz_variables()
displays columns/variable principal
coordinates. viz_variables()
depicts the variables by rays emanating
from the origin (both their lengths and directions are important to
the interpretation).viz_contributions()
displays (joint) contributions.viz_cos2()
displays (joint) cos2.The viz_*()
functions allow to highlight additional information by
varying different graphical elements (color, transparency, shape and
size of symbols…).
## Form biplot
biplot(X, type = "form")
## Highlight species
viz_individuals(
x = X,
extra_quali = iris$Species,
color = c("#004488", "#DDAA33", "#BB5566"),
ellipse = list(type = "tolerance", level = 0.95) # Add ellipses
)
## Highlight petal length
viz_individuals(
x = X,
extra_quanti = iris$Petal.Length,
color = color("iridescent")(255),
size = c(1, 2)
)
## Plot variables factor map
viz_variables(X)
## Scree plot
screeplot(X, eigenvalues = FALSE, cumulative = TRUE)
This package provides translations of user-facing communications, like
messages, warnings and errors, and graphical elements (axis labels). The
preferred language is by default taken from the locale. This can be
overridden by setting of the environment variable LANGUAGE
(you only
need to do this once per session):
Sys.setenv(LANGUAGE = "<language code>")
Languages currently available are English (en
) and French (fr
).
Please note that the dimensio project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.