Canonical.Mixture.Distribution: Create a mixture distribution object based off of a...

View source: R/canonical_mixture_distribution.R

Canonical.Mixture.DistributionR Documentation

Create a mixture distribution object based off of a canonical, univariate distribution

Usage

Canonical.Mixture.Distribution(
  name,
  dist.name,
  parameters,
  weights = 1,
  var.name = NULL,
  support = Continuous.Support(),
  density.function.name = paste0("d", dist.name),
  cdf.function.name = paste0("p", dist.name),
  quantile.function.name = paste0("q", dist.name),
  transformation = NULL,
  is.improper = F,
  mean.values = as.numeric(NA),
  variance.values = as.numeric(NA)
)

Arguments

name

A short, descriptive name for the distribution

dist.name

The root name of the distribution as used by d/r/p functions in R. For example, to create a normal distribution, dist.name='norm' (like dnorm, rnorm, pnorm). To create a beta distribution, dist.name='beta' (dbeta, rbeta, qbeta). This argument is only necessary if density.function, cdf.function, and quantile.function are not passed explicitly

parameters

A list of vectors, where each element has parameter values that would be passed to d/r/p functions in R. For example, for a mixture of normal(0,1) and normal(1,1) distributions, parameters=list(mean=c(0,1), sd=1) or parameters=list(mean=c(0,1), sd=c(1,1))

weights

A weight for each component distribution in the mixture. The weights need not sum to 1. If a scalar is passed, all components are given the same weight

var.name

The name of the variable in this distribution

transformation

A transformation object, if the named distribution operates on a transformation of the random variable (can also pass NULL for no transformation or the name of a predefined transformation - see get.defined.transformation). For example, to create a log-normal distribution, use dist.name='norm' with transformation='log

is.improper, is.discrete

Logicals indicating whether the distribution is improper/discrete

mean.values, variance.values

If known, vectors of values for the means and variances of each component of the distribution

lower.bound, upper.bound

If this is a bounded distribution, the lower and upper bounds

density.function, cdf.function, quantile.function

The functions that calculate the density, cdf, and quantile respectively. These should take the standard parameters of such functions in R. density.function should take 'x', distribution-specific parameters, and 'log'. cdf.function should take 'q', distribution-specific parameters, 'lower.tail' and 'log.p'. quantile.function should take 'p', distribution-specific parameters, and 'lower.tail' and 'log.p'

See Also

get.defined.transformation, create.transformation

Other Univariate Canonical Distribution Constructors: Bernoulli.Distribution(), Beta.Distribution(), Binomial.Distribution(), Logitnormal.Distribution(), Logituniform.Distribution(), Lognormal.Distribution(), Loguniform.Distribution(), Normal.Distribution(), Transformed.Normal.Distribution(), Uniform.Distribution(), Univariate.Canonical.Distribution()

Other Distribution Constructors: Autoregressive.Multivariate.Normal.Distribution(), Bernoulli.Distribution(), Beta.Distribution(), Binomial.Distribution(), Compound.Symmetry.Multivariate.Normal.Distribution(), Constant.Distribution(), Discrete.Set.Distribution(), Empiric.Distribution(), Logitnormal.Distribution(), Logitnormal.Mixture(), Logituniform.Distribution(), Lognormal.Distribution(), Lognormal.Mixture(), Loguniform.Distribution(), Multivariate.Correlated.Uniform.Distribution(), Multivariate.Logitnormal.Distribution(), Multivariate.Lognormal.Distribution(), Multivariate.Normal.Distribution(), Normal.Distribution(), Normal.Mixture(), Smoothed.Empiric.Distribution(), Transformed.Multivariate.Normal.Distribution(), Transformed.Normal.Distribution(), Transformed.Normal.Mixture(), Uniform.Distribution(), Univariate.Canonical.Distribution(), join.distributions()


tfojo1/distributions documentation built on July 27, 2024, 3:29 p.m.