View source: R/canonical_mixture_distribution.R
Canonical.Mixture.Distribution | R Documentation |
Canonical.Mixture.Distribution(
name,
dist.name,
parameters,
weights = 1,
var.name = NULL,
support = Continuous.Support(),
density.function.name = paste0("d", dist.name),
cdf.function.name = paste0("p", dist.name),
quantile.function.name = paste0("q", dist.name),
transformation = NULL,
is.improper = F,
mean.values = as.numeric(NA),
variance.values = as.numeric(NA)
)
name |
A short, descriptive name for the distribution |
dist.name |
The root name of the distribution as used by d/r/p functions in R. For example, to create a normal distribution, dist.name='norm' (like dnorm, rnorm, pnorm). To create a beta distribution, dist.name='beta' (dbeta, rbeta, qbeta). This argument is only necessary if density.function, cdf.function, and quantile.function are not passed explicitly |
parameters |
A list of vectors, where each element has parameter values that would be passed to d/r/p functions in R. For example, for a mixture of normal(0,1) and normal(1,1) distributions, parameters=list(mean=c(0,1), sd=1) or parameters=list(mean=c(0,1), sd=c(1,1)) |
weights |
A weight for each component distribution in the mixture. The weights need not sum to 1. If a scalar is passed, all components are given the same weight |
var.name |
The name of the variable in this distribution |
transformation |
A transformation object, if the named distribution operates on a transformation of the random variable (can also pass NULL for no transformation or the name of a predefined transformation - see |
is.improper , is.discrete |
Logicals indicating whether the distribution is improper/discrete |
mean.values , variance.values |
If known, vectors of values for the means and variances of each component of the distribution |
lower.bound , upper.bound |
If this is a bounded distribution, the lower and upper bounds |
density.function , cdf.function , quantile.function |
The functions that calculate the density, cdf, and quantile respectively. These should take the standard parameters of such functions in R. density.function should take 'x', distribution-specific parameters, and 'log'. cdf.function should take 'q', distribution-specific parameters, 'lower.tail' and 'log.p'. quantile.function should take 'p', distribution-specific parameters, and 'lower.tail' and 'log.p' |
get.defined.transformation
, create.transformation
Other Univariate Canonical Distribution Constructors:
Bernoulli.Distribution()
,
Beta.Distribution()
,
Binomial.Distribution()
,
Logitnormal.Distribution()
,
Logituniform.Distribution()
,
Lognormal.Distribution()
,
Loguniform.Distribution()
,
Normal.Distribution()
,
Transformed.Normal.Distribution()
,
Uniform.Distribution()
,
Univariate.Canonical.Distribution()
Other Distribution Constructors:
Autoregressive.Multivariate.Normal.Distribution()
,
Bernoulli.Distribution()
,
Beta.Distribution()
,
Binomial.Distribution()
,
Compound.Symmetry.Multivariate.Normal.Distribution()
,
Constant.Distribution()
,
Discrete.Set.Distribution()
,
Empiric.Distribution()
,
Logitnormal.Distribution()
,
Logitnormal.Mixture()
,
Logituniform.Distribution()
,
Lognormal.Distribution()
,
Lognormal.Mixture()
,
Loguniform.Distribution()
,
Multivariate.Correlated.Uniform.Distribution()
,
Multivariate.Logitnormal.Distribution()
,
Multivariate.Lognormal.Distribution()
,
Multivariate.Normal.Distribution()
,
Normal.Distribution()
,
Normal.Mixture()
,
Smoothed.Empiric.Distribution()
,
Transformed.Multivariate.Normal.Distribution()
,
Transformed.Normal.Distribution()
,
Transformed.Normal.Mixture()
,
Uniform.Distribution()
,
Univariate.Canonical.Distribution()
,
join.distributions()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.