README.md

doudpackage

CRAN
status

The goal of doudpackage is to Creates the “table one” of biomedical papers. Fill it with your data and the name of the variable which you’ll make the group(s) out of and it will make univariate, bivariate analysis and parse it into HTML.

Installation

You can install the development version of doudpackage from GitHub with:

# install.packages("devtools")
devtools::install_github("tiago972/doudpackage")

Example

library(doudpackage)
## basic example code
data(iris)
library(stringi)
iris$fact_1<-as.factor(as.character(sample(1:5, 150, replace = TRUE)))
n_na<-sample(1:150, 30)
iris[n_na, "fact_1"]<-NA
iris$fact_2<-as.factor(as.character(stri_rand_strings(150, 1, '[A-B]')))
iris$num<-runif(150, min = 0, max = 100)
n_na<-sample(1:150, 5)
iris[n_na, "num"]<-NA
iris_test<-descTab(iris, group = "Species", na.print = TRUE)
testParse<-parseClassFun(iris_test, levels_to_keep = list("fact_2" =  "A"),
group_rows_labels = list("Size" = c("Petal.Length", "Petal.Width"),
"My_f" = c("num", "fact_2")))
setosa
versicolor
virginica
Total
n = 50 (33.3) n = 50 (33.3) n = 50 (33.3) n = 150 pvalue Size Petal.Length 1.5 (0.2) 4.3 (0.5) 5.6 (0.6) 3.8 (1.8) \< 0.001 Petal.Width 0.2 (0.1) 1.3 (0.2) 2 (0.3) 1.2 (0.8) \< 0.001 My_f fact_2, A 24 (48) 34 (68) 29 (58) 87 (58) 0.128 num 51.2 (28.9) 47.9 (28.5) 48.4 (31.7) 49.2 (29.6) 0.837 Missing values 0 (0) 4 (8) 1 (2) 5 (3) fact_1, 1 8 (16) 5 (10) 10 (20) 23 (15.3) 0.698 fact_1, 2 8 (16) 5 (10) 3 (6) 16 (10.7) 0.698 fact_1, 3 5 (10) 8 (16) 10 (20) 23 (15.3) 0.698 fact_1, 4 9 (18) 10 (20) 9 (18) 28 (18.7) 0.698 fact_1, 5 9 (18) 10 (20) 11 (22) 30 (20) 0.698 Missing values 11 (22) 12 (24) 7 (14) 30 (20) Sepal.Length 5 (0.4) 5.9 (0.5) 6.6 (0.6) 5.8 (0.8) \< 0.001 Sepal.Width 3.4 (0.4) 2.8 (0.3) 3 (0.3) 3.1 (0.4) \< 0.001

tiago972/doudpackage documentation built on March 27, 2024, 8:44 p.m.