View source: R/detect_outlier_samples.R
detect_outlier | R Documentation |
Detect outlier samples. See more here: https://privefl.github.io/blog/detecting-outlier-samples-in-pca/
detect_outlier( object, na_percentage_cutoff = 0.5, sd_fold_change = 6, mad_fold_change = 6, dist_p_cutoff = 0.05 )
object |
A mass_dataset object. |
na_percentage_cutoff |
na_percentage_cutoff |
sd_fold_change |
sd_fold_change |
mad_fold_change |
mad_fold_change |
dist_p_cutoff |
dist_p_cutoff |
A new mass_dataset object.
Xiaotao Shen shenxt1990@outlook.com
library(massdataset) data("expression_data") data("sample_info") data("variable_info") object = create_mass_dataset( expression_data = expression_data, sample_info = sample_info, variable_info = variable_info ) object = object %>% log() %>% scale() outlier_samples = object %>% detect_outlier() extract_outlier_table(outlier_samples) ###MV plot massdataset::show_sample_missing_values(object = object, color_by = "class", percentage = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.