View source: R/detect_outlier_samples.R
detect_outlier | R Documentation |
Detect outlier samples. See more here: https://privefl.github.io/blog/detecting-outlier-samples-in-pca/
detect_outlier(
object,
na_percentage_cutoff = 0.5,
sd_fold_change = 6,
mad_fold_change = 6,
dist_p_cutoff = 0.05
)
object |
A mass_dataset object. |
na_percentage_cutoff |
na_percentage_cutoff |
sd_fold_change |
sd_fold_change |
mad_fold_change |
mad_fold_change |
dist_p_cutoff |
dist_p_cutoff |
A new mass_dataset object.
Xiaotao Shen shenxt1990@outlook.com
library(massdataset)
data("expression_data")
data("sample_info")
data("variable_info")
object =
create_mass_dataset(
expression_data = expression_data,
sample_info = sample_info,
variable_info = variable_info
)
object =
object %>%
log() %>%
scale()
outlier_samples =
object %>%
detect_outlier()
extract_outlier_table(outlier_samples)
###MV plot
massdataset::show_sample_missing_values(object = object,
color_by = "class",
percentage = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.