View source: R/volcono_plot2.R
volcano_plot | R Documentation |
Creates a volcano plot for visualizing differential expression results, highlighting significant changes in expression levels.
volcano_plot(
object,
fc_column_name = "fc",
log2_fc = TRUE,
p_value_column_name = "p_value_adjust",
labs_x = "log2(Fold change)",
labs_y = "-log(p-adjust, 10)",
fc_up_cutoff = 2,
fc_down_cutoff = 0.5,
p_value_cutoff = 0.05,
line_color = "red",
up_color = "#EE0000FF",
down_color = "#3B4992FF",
no_color = "#808180FF",
point_size = 2,
point_alpha = 1,
point_size_scale = "log10_p",
line_type = 1,
add_text = FALSE,
text_for = c("marker", "UP", "DOWM"),
text_from = "variable_id"
)
## S3 method for class 'mass_dataset'
volcano_plot(
object,
fc_column_name = "fc",
log2_fc = TRUE,
p_value_column_name = "p_value_adjust",
labs_x = "log2(Fold change)",
labs_y = "-log(p-adjust, 10)",
fc_up_cutoff = 2,
fc_down_cutoff = 0.5,
p_value_cutoff = 0.05,
line_color = "red",
up_color = "#EE0000FF",
down_color = "#3B4992FF",
no_color = "#808180FF",
point_size = 2,
point_alpha = 1,
point_size_scale = "log10_p",
line_type = 1,
add_text = FALSE,
text_for = c("marker", "UP", "DOWM"),
text_from = "variable_id"
)
## S3 method for class 'data.frame'
volcano_plot(
object,
fc_column_name = "fc",
log2_fc = TRUE,
p_value_column_name = "p_value_adjust",
labs_x = "log2(Fold change)",
labs_y = "-log(p-adjust, 10)",
fc_up_cutoff = 2,
fc_down_cutoff = 0.5,
p_value_cutoff = 0.05,
line_color = "red",
up_color = "#EE0000FF",
down_color = "#3B4992FF",
no_color = "#808180FF",
point_size = 2,
point_alpha = 1,
point_size_scale = "log10_p",
line_type = 1,
add_text = FALSE,
text_for = c("marker", "UP", "DOWM"),
text_from = "variable_id"
)
object |
An object containing the data to be plotted. Can be a 'data.frame', 'mass_dataset' object, or other types for which methods are defined. |
fc_column_name |
The name of the column containing fold change values. Defaults to '"fc"'. |
log2_fc |
Logical, indicating if fold change values should be log2 transformed. Defaults to 'TRUE'. |
p_value_column_name |
The name of the column containing p-value adjustments. Defaults to '"p_value_adjust"'. |
labs_x |
The label for the x-axis. Defaults to '"log2(Fold change)"'. |
labs_y |
The label for the y-axis. Defaults to '"-log(p-adjust, 10)"'. |
fc_up_cutoff |
The fold change cutoff for considering an expression level significantly up-regulated. Defaults to '2'. |
fc_down_cutoff |
The fold change cutoff for considering an expression level significantly down-regulated. Defaults to '0.5'. |
p_value_cutoff |
The p-value cutoff for significance. Defaults to '0.05'. |
line_color |
The color of the lines marking cutoffs. Defaults to '"red"'. |
up_color |
The color used for points representing up-regulated variables. Defaults to '"#EE0000FF"'. |
down_color |
The color used for points representing down-regulated variables. Defaults to '"#3B4992FF"'. |
no_color |
The color used for points not meeting significance criteria. Defaults to '"#808180FF"'. |
point_size |
The base size of points in the plot. Defaults to '2'. |
point_alpha |
The transparency level of points in the plot. Defaults to '1'. |
point_size_scale |
A character string indicating if and how the size of points should scale, typically based on significance. Optional. |
line_type |
The type of line to use for cutoff markers. Defaults to '1'. |
add_text |
Logical, indicating if labels should be added to significant points. Defaults to 'FALSE'. |
text_for |
A character vector indicating which points to label based on their 'marker' status. Possible values are '"marker"', '"UP"', '"DOWN"', or a combination thereof. Defaults to 'c("marker", "UP", "DOWN")'. |
text_from |
The name of the column containing labels for text annotations. Required if 'add_text' is 'TRUE'. |
A ggplot object representing the volcano plot.
Xiaotao Shen shenxt1990@outlook.com
library(massdataset)
library(magrittr)
library(dplyr)
data("liver_aging_pos")
liver_aging_pos
w_78 =
liver_aging_pos %>%
activate_mass_dataset(what = "sample_info") %>%
dplyr::filter(group == "78W") %>%
dplyr::pull(sample_id)
w_24 =
liver_aging_pos %>%
activate_mass_dataset(what = "sample_info") %>%
dplyr::filter(group == "24W") %>%
dplyr::pull(sample_id)
control_sample_id = w_24
case_sample_id = w_78
liver_aging_pos =
mutate_fc(
object = liver_aging_pos,
control_sample_id = control_sample_id,
case_sample_id = case_sample_id,
mean_median = "mean"
)
liver_aging_pos =
mutate_p_value(
object = liver_aging_pos,
control_sample_id = control_sample_id,
case_sample_id = case_sample_id,
method = "t.test",
p_adjust_methods = "BH"
)
object = liver_aging_pos
volcano_plot(
object = object,
fc_column_name = "fc",
p_value_column_name = "p_value_adjust",
labs_x = "log2(Fold change)",
labs_y = "-log(p-adjust, 10)",
fc_up_cutoff = 2,
fc_down_cutoff = 0.5,
p_value_cutoff = 0.05,
add_text = TRUE
)
volcano_plot(
object = object,
fc_column_name = "fc",
p_value_column_name = "p_value",
labs_x = "log2(Fold change)",
labs_y = "-log(p-value, 10)",
fc_up_cutoff = 2,
fc_down_cutoff = 0.5,
p_value_cutoff = 0.05,
add_text = FALSE,
point_alpha = 0.5
)
volcano_plot(
object = object,
fc_column_name = "fc",
p_value_column_name = "p_value",
labs_x = "log2(Fold change)",
labs_y = "-log(p-value, 10)",
fc_up_cutoff = 2,
fc_down_cutoff = 0.5,
p_value_cutoff = 0.05,
add_text = FALSE,
point_alpha = 0.5,
point_size_scale = "p_value"
) +
scale_size_continuous(range = c(0.5, 3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.