Code
set_mode(set_engine(boost_tree(), "lightgbm"), "regression")
Output
Boosted Tree Model Specification (regression)
Computational engine: lightgbm
Code
set_mode(set_engine(boost_tree(), "lightgbm", nrounds = 100), "classification")
Output
Boosted Tree Model Specification (classification)
Engine-Specific Arguments:
nrounds = 100
Computational engine: lightgbm
`mtry` must be greater than or equal to 1, not 0.5.
i `mtry` is currently being interpreted as a count rather than a proportion.
i Supply `counts = FALSE` to `set_engine()` to supply this argument as a proportion rather than a count.
i See `?train_lightgbm()` for more details.
`mtry` must be less than or equal to 1, not 3.
i `mtry` is currently being interpreted as a proportion rather than a count.
i Supply `counts = TRUE` to `set_engine()` to supply this argument as a count rather than a proportion.
i See `?train_lightgbm()` for more details.
Code
fit(set_mode(set_engine(boost_tree(mtry = tune::tune()), "lightgbm"),
"regression"), bill_length_mm ~ ., data = penguins)
Condition
Error in `fit()`:
! `feature_fraction_bynode` must be a number, not a call.
param
argument in set_engine()Code
fit(mod_spec, mpg ~ ., mtcars)
Condition
Warning:
Arguments passed in through `params` as a list will be ignored.
Instead pass the arguments directly to the `...`.
Output
parsnip model object
LightGBM Model (1 tree)
Objective: regression
Fitted to dataset with 10 columns
Code
.res <- fit(set_mode(set_engine(boost_tree(), "lightgbm", colnames = paste0("X",
1:ncol(penguins))), "regression"), bill_length_mm ~ ., data = penguins)
Condition
Warning:
The following argument is guarded by bonsai and will not be passed to LightGBM: colnames.
Code
.res <- fit(set_mode(set_engine(boost_tree(), "lightgbm", colnames = paste0("X",
1:ncol(penguins)), callbacks = list(p = print)), "regression"),
bill_length_mm ~ ., data = penguins)
Condition
Warning:
The following arguments are guarded by bonsai and will not be passed to LightGBM: colnames and callbacks.
Code
.res <- fit(set_mode(set_engine(boost_tree(), "lightgbm", colnames = paste0("X",
1:ncol(penguins))), "regression"), bill_length_mm ~ ., data = penguins)
Condition
Warning:
The following argument is guarded by bonsai and will not be passed to LightGBM: colnames.
Code
fit(set_mode(set_engine(boost_tree(), "lightgbm", n_iter = 10), "regression"),
bill_length_mm ~ ., data = penguins)
Condition
Error in `fit()`:
! The `n_iter` argument passed to `set_engine()` (`?parsnip::set_engine()`) is an alias for a main model argument.
i Please instead pass this argument via the `trees` argument to `boost_tree()` (`?parsnip::boost_tree()`).
Code
fit(set_mode(set_engine(boost_tree(), "lightgbm", num_tree = 10), "regression"),
bill_length_mm ~ ., data = penguins)
Condition
Error in `fit()`:
! The `num_tree` argument passed to `set_engine()` (`?parsnip::set_engine()`) is an alias for a main model argument.
i Please instead pass this argument via the `trees` argument to `boost_tree()` (`?parsnip::boost_tree()`).
Code
fit(set_mode(set_engine(boost_tree(), "lightgbm", min_split_gain = 2),
"regression"), bill_length_mm ~ ., data = penguins)
Condition
Error in `fit()`:
! The `min_split_gain` argument passed to `set_engine()` (`?parsnip::set_engine()`) is an alias for a main model argument.
i Please instead pass this argument via the `loss_reduction` argument to `boost_tree()` (`?parsnip::boost_tree()`).
Code
fit(set_mode(set_engine(boost_tree(), "lightgbm", min_split_gain = 2,
lambda_l2 = 0.5), "regression"), bill_length_mm ~ ., data = penguins)
Condition
Error in `fit()`:
! The `min_split_gain` argument passed to `set_engine()` (`?parsnip::set_engine()`) is an alias for a main model argument.
i Please instead pass this argument via the `loss_reduction` argument to `boost_tree()` (`?parsnip::boost_tree()`).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.