test_that("MASS::qda model object", {
skip_if_not_installed("MASS")
skip_if_not_installed("mlbench")
# exp_* objects in helper-object.R
# formula method
expect_no_error(f_fit <- fit(qda_spec, species ~ ., data = penguin_tr))
expect_equal(f_fit$fit$scaling, exp_f_fit_qda$scaling)
expect_equal(f_fit$fit$means, exp_f_fit_qda$means)
# x/y method
expect_no_error(
xy_fit <- fit_xy(qda_spec, x = penguin_tr[, -1], y = penguin_tr$species)
)
# pass an extra argument
expect_no_error(prior_fit <- fit(prior_spec_qda, species ~ ., data = penguin_tr))
expect_equal(prior_fit$fit$scaling, exp_prior_fit_qda$scaling)
expect_equal(prior_fit$fit$means, exp_prior_fit_qda$means)
})
# ------------------------------------------------------------------------------
test_that("MASS::qda class predictions", {
skip_if_not_installed("MASS")
skip_if_not_installed("mlbench")
# exp_* objects in helper-object.R
# formula method
expect_no_error(f_fit <- fit(qda_spec, species ~ ., data = penguin_tr))
f_pred <- predict(f_fit, penguin_te)
exp_f_pred <- predict(exp_f_fit_qda, penguin_te)
expect_true(inherits(f_pred, "tbl_df"))
expect_true(all(names(f_pred) == ".pred_class"))
expect_equal(f_pred$.pred_class, exp_f_pred$class)
# x/y method
expect_no_error(
xy_fit <- fit_xy(qda_spec, x = penguin_tr[, -1], y = penguin_tr$species)
)
xy_pred <- predict(xy_fit, penguin_te)
# See bug note above
# exp_xy_pred <- predict(exp_xy_fit, penguin_te)
expect_true(inherits(xy_pred, "tbl_df"))
expect_true(all(names(xy_pred) == ".pred_class"))
expect_equal(xy_pred$.pred_class, exp_f_pred$class)
# added argument
expect_no_error(prior_fit <- fit(prior_spec_qda, species ~ ., data = penguin_tr))
prior_pred <- predict(prior_fit, penguin_te)
exp_prior_pred <- predict(exp_prior_fit_qda, penguin_te)
expect_true(inherits(f_pred, "tbl_df"))
expect_true(all(names(f_pred) == ".pred_class"))
expect_equal(prior_pred$.pred_class, exp_prior_pred$class)
})
# ------------------------------------------------------------------------------
test_that("MASS::qda prob predictions", {
skip_if_not_installed("MASS")
skip_if_not_installed("mlbench")
# exp_* objects in helper-object.R
# formula method
expect_no_error(f_fit <- fit(qda_spec, species ~ ., data = penguin_tr))
f_pred <- predict(f_fit, penguin_te, type = "prob")
exp_f_pred <- probs_to_tibble(predict(exp_f_fit_qda, penguin_te)$posterior)
expect_true(inherits(f_pred, "tbl_df"))
expect_equal(names(f_pred), pen_prob_names)
expect_equal(f_pred, exp_f_pred)
# x/y method
expect_no_error(
xy_fit <- fit_xy(qda_spec, x = penguin_tr[, -1], y = penguin_tr$species)
)
xy_pred <- predict(xy_fit, penguin_te, type = "prob")
# See bug note above
# exp_xy_pred <- predict(exp_xy_fit, penguin_te)
expect_true(inherits(xy_pred, "tbl_df"))
expect_equal(names(xy_pred), pen_prob_names)
expect_equal(xy_pred, exp_f_pred)
# added argument
expect_no_error(prior_fit <- fit(prior_spec_qda, species ~ ., data = penguin_tr))
prior_pred <- predict(prior_fit, penguin_te, type = "prob")
exp_prior_pred <- probs_to_tibble(predict(exp_prior_fit_qda, penguin_te)$posterior)
expect_true(inherits(prior_pred, "tbl_df"))
expect_equal(names(prior_pred), pen_prob_names)
expect_equal(prior_pred, exp_prior_pred)
})
# ------------------------------------------------------------------------------
test_that("MASS::qda missing data", {
skip_if_not_installed("MASS")
skip_if_not_installed("mlbench")
# exp_* objects in helper-object.R
exp_f_fit_miss <- MASS::qda(species ~ ., data = penguins_miss)
expect_no_error(f_fit <- fit(qda_spec, species ~ ., data = penguins_miss))
expect_snapshot(f_pred <- predict(f_fit, penguins_miss, type = "prob"))
expect_snapshot(
# exp_f_pred <- probs_to_tibble(predict(exp_f_fit_miss, penguins_miss)$posterior)
exp_f_pred <- predict(exp_f_fit_miss, penguins_miss)$posterior
)
exp_f_pred <- probs_to_tibble(exp_f_pred)
expect_s3_class(f_pred, "tbl_df")
expect_true(nrow(f_pred) == nrow(penguins_miss))
expect_equal(names(f_pred), pen_prob_names)
expect_equal(f_pred, exp_f_pred)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.