r descr_models("bart", "dbarts")

Tuning Parameters

defaults <- 
  tibble::tibble(parsnip = c("trees", "prior_terminal_node_coef",
                             "prior_terminal_node_expo", "prior_outcome_range"),
                 default = c("200L", "0.95", "2.00", "2.00")
  )

param <-
 bart() %>% 
  set_engine("dbarts") %>% 
  set_mode("regression") %>% 
  make_parameter_list(defaults)

This model has r nrow(param) tuning parameters:

param$item

Parsnip changes the default range for trees to c(50, 500).

Important engine-specific options

Some relevant arguments that can be passed to set_engine():

Translation from parsnip to the original package (classification)

bart(
  trees = integer(1),
  prior_terminal_node_coef = double(1),
  prior_terminal_node_expo = double(1),
  prior_outcome_range = double(1)
) %>% 
  set_engine("dbarts") %>% 
  set_mode("classification") %>% 
  translate()

Translation from parsnip to the original package (regression)

bart(
  trees = integer(1),
  prior_terminal_node_coef = double(1),
  prior_terminal_node_expo = double(1),
  prior_outcome_range = double(1)
) %>% 
  set_engine("dbarts") %>% 
  set_mode("regression") %>% 
  translate()

Preprocessing requirements


[dbarts::bart()] will also convert the factors to indicators if the user does not create them first.

References



tidymodels/parsnip documentation built on Feb. 19, 2025, 2:10 a.m.