man/rmd/bart_dbarts.md

For this engine, there are multiple modes: classification and regression

Tuning Parameters

This model has 4 tuning parameters:

Important engine-specific options

Some relevant arguments that can be passed to set_engine():

Translation from parsnip to the original package (classification)

bart(
  trees = integer(1),
  prior_terminal_node_coef = double(1),
  prior_terminal_node_expo = double(1),
  prior_outcome_range = double(1)
) %>% 
  set_engine("dbarts") %>% 
  set_mode("classification") %>% 
  translate()
## BART Model Specification (classification)
## 
## Main Arguments:
##   trees = integer(1)
##   prior_terminal_node_coef = double(1)
##   prior_terminal_node_expo = double(1)
##   prior_outcome_range = double(1)
## 
## Computational engine: dbarts 
## 
## Model fit template:
## dbarts::bart(x = missing_arg(), y = missing_arg(), ntree = integer(1), 
##     base = double(1), power = double(1), k = double(1), verbose = FALSE, 
##     keeptrees = TRUE, keepcall = FALSE)

Translation from parsnip to the original package (regression)

bart(
  trees = integer(1),
  prior_terminal_node_coef = double(1),
  prior_terminal_node_expo = double(1),
  prior_outcome_range = double(1)
) %>% 
  set_engine("dbarts") %>% 
  set_mode("regression") %>% 
  translate()
## BART Model Specification (regression)
## 
## Main Arguments:
##   trees = integer(1)
##   prior_terminal_node_coef = double(1)
##   prior_terminal_node_expo = double(1)
##   prior_outcome_range = double(1)
## 
## Computational engine: dbarts 
## 
## Model fit template:
## dbarts::bart(x = missing_arg(), y = missing_arg(), ntree = integer(1), 
##     base = double(1), power = double(1), k = double(1), verbose = FALSE, 
##     keeptrees = TRUE, keepcall = FALSE)

Preprocessing requirements

Factor/categorical predictors need to be converted to numeric values (e.g., dummy or indicator variables) for this engine. When using the formula method via \code{\link[=fit.model_spec]{fit()}}, parsnip will convert factor columns to indicators.

[dbarts::bart()] will also convert the factors to indicators if the user does not create them first.

References



tidymodels/parsnip documentation built on Feb. 19, 2025, 2:10 a.m.