r descr_models("naive_Bayes", "h2o")
defaults <- tibble::tibble(parsnip = c("Laplace"), default = c("0.0")) param <- naive_Bayes() %>% set_engine("h2o") %>% make_parameter_list(defaults)
This model has r nrow(param)
tuning parameter:
param$item
[h2o::h2o.naiveBayes()] provides several engine arguments to deal with imbalances and rare classes:
balance_classes
A logical value controlling over/under-sampling (for imbalanced data). Defaults to FALSE
.
class_sampling_factors
The over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Require balance_classes
to be TRUE
.
min_sdev
: The minimum standard deviation to use for observations without enough data, must be greater than 1e-10.
min_prob
: The minimum probability to use for observations with not enough data.
r uses_extension("naive_Bayes", "h2o", "classification")
[agua::h2o_train_nb()] is a wrapper around [h2o::h2o.naiveBayes()].
naive_Bayes(Laplace = numeric(0)) %>% set_engine("h2o") %>% translate()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.