r descr_models("pls", "mixOmics")
defaults <- tibble::tibble(parsnip = c("num_comp", "predictor_prop"), default = c("2L", "see below")) param <- pls() %>% set_engine("mixOmics") %>% set_mode("regression") %>% make_parameter_list(defaults)
This model has r nrow(param)
tuning parameters:
param$item
r uses_extension("pls", "mixOmics", "regression")
library(plsmod) pls(num_comp = integer(1), predictor_prop = double(1)) %>% set_engine("mixOmics") %>% set_mode("regression") %>% translate()
[plsmod::pls_fit()] is a function that:
num_comp
if the value is larger than the number of factors.predictor_prop
.keepX
argument of mixOmics::spls()
for sparse models. r uses_extension("pls", "mixOmics", "classification")
library(plsmod) pls(num_comp = integer(1), predictor_prop = double(1)) %>% set_engine("mixOmics") %>% set_mode("classification") %>% translate()
In this case, [plsmod::pls_fit()] has the same role as above but eventually targets mixOmics::plsda()
or mixOmics::splsda()
.
This package is available via the Bioconductor repository and is not accessible via CRAN. You can install using:
if (!require("remotes", quietly = TRUE)) { install.packages("remotes") } remotes::install_bioc("mixOmics")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.