Code
linear_reg(mixture = 0) %>% set_engine("glmnet", nlambda = 10) %>% update(
mixture = tune(), nlambda = tune())
Output
Linear Regression Model Specification (regression)
Main Arguments:
mixture = tune()
Engine-Specific Arguments:
nlambda = tune()
Computational engine: glmnet
Code
linear_reg(mode = "classification")
Condition
Error in `linear_reg()`:
! "classification" is not a known mode for model `linear_reg()`.
Code
translate(linear_reg(), engine = "wat?")
Condition
Error in `translate.default()`:
x Engine "wat?" is not supported for `linear_reg()`
i See `show_engines("linear_reg")`.
Code
translate(linear_reg(), engine = NULL)
Condition
Error in `translate.default()`:
! Please set an engine.
Code
res <- fit_xy(hpc_basic, x = hpc[, num_pred], y = hpc$class, control = ctrl)
Condition
Error in `check_outcome()`:
! For a regression model, the outcome should be <numeric>, not a <factor> object.
Code
res <- fit_xy(hpc_basic, x = hpc[, num_pred], y = as.character(hpc$class),
control = ctrl)
Condition
Error in `check_outcome()`:
! For a regression model, the outcome should be <numeric>, not a character vector.
Code
res <- fit(hpc_basic, hpc_bad_form, data = hpc, control = ctrl)
Condition
Error in `check_outcome()`:
! For a regression model, the outcome should be <numeric>, not a <factor> object.
Code
lm_form_catch <- fit(hpc_basic, hpc_bad_form, data = hpc, control = caught_ctrl)
Condition
Error in `check_outcome()`:
! For a regression model, the outcome should be <numeric>, not a <factor> object.
Code
res <- fit_xy(hpc_glm, x = hpc[, num_pred], y = hpc$class, control = ctrl)
Condition
Error in `check_outcome()`:
! For a regression model, the outcome should be <numeric>, not a <factor> object.
Code
res <- fit(hpc_glm, hpc_bad_form, data = hpc, control = ctrl)
Condition
Error in `check_outcome()`:
! For a regression model, the outcome should be <numeric>, not a <factor> object.
Code
lm_form_catch <- fit(hpc_glm, hpc_bad_form, data = hpc, control = caught_ctrl)
Condition
Error in `check_outcome()`:
! For a regression model, the outcome should be <numeric>, not a <factor> object.
Code
predict(res_xy, newdata = hpc[1:3, num_pred])
Condition
Error in `predict()`:
! Please use `new_data` instead of `newdata`.
Code
show_engines("linear_re")
Condition
Error in `show_engines()`:
! No results found for model function "x".
Code
preds <- linear_reg() %>% fit(y ~ ., data = data) %>% predict(new_data = data2)
Condition
Warning in `predict.lm()`:
prediction from rank-deficient fit; consider predict(., rankdeficient="NA")
Code
spec <- linear_reg(mixture = -1) %>% set_engine("lm") %>% set_mode("regression")
fit(spec, compounds ~ ., hpc)
Condition
Error in `fit()`:
! `mixture` must be a number between 0 and 1 or `NULL`, not the number -1.
Code
spec <- linear_reg(penalty = -1) %>% set_engine("lm") %>% set_mode("regression")
fit(spec, compounds ~ ., hpc)
Condition
Error in `fit()`:
! `penalty` must be a number larger than or equal to 0 or `NULL`, not the number -1.
Code
linear_reg(penalty = 1) %>% set_engine("glmnet", family = poisson) %>% fit(mpg ~
., data = mtcars)
Condition
Error in `fit()`:
! Please install the glmnet package to use this engine.
Code
linear_reg(penalty = 1) %>% set_engine("glmnet", family = stats::poisson) %>%
fit(mpg ~ ., data = mtcars)
Condition
Error in `fit()`:
! Please install the glmnet package to use this engine.
Code
linear_reg(penalty = 1) %>% set_engine("glmnet", family = stats::poisson()) %>%
fit(mpg ~ ., data = mtcars)
Condition
Error in `fit()`:
! Please install the glmnet package to use this engine.
Code
linear_reg(penalty = 1) %>% set_engine("glmnet", family = "poisson") %>% fit(
mpg ~ ., data = mtcars)
Condition
Error in `fit()`:
! Please install the glmnet package to use this engine.
Code
linear_reg() %>% tunable()
Output
# A tibble: 0 x 5
# i 5 variables: name <chr>, call_info <list>, source <chr>, component <chr>,
# component_id <chr>
Code
linear_reg() %>% set_engine("brulee") %>% tunable()
Output
# A tibble: 8 x 5
name call_info source component component_id
<chr> <list> <chr> <chr> <chr>
1 epochs <named list [3]> model_spec linear_reg engine
2 penalty <named list [2]> model_spec linear_reg main
3 mixture <named list [2]> model_spec linear_reg main
4 learn_rate <named list [3]> model_spec linear_reg engine
5 momentum <named list [3]> model_spec linear_reg engine
6 batch_size <named list [2]> model_spec linear_reg engine
7 stop_iter <named list [2]> model_spec linear_reg engine
8 rate_schedule <named list [3]> model_spec linear_reg engine
Code
linear_reg() %>% set_engine("glmnet") %>% tunable()
Output
# A tibble: 2 x 5
name call_info source component component_id
<chr> <list> <chr> <chr> <chr>
1 penalty <named list [2]> model_spec linear_reg main
2 mixture <named list [3]> model_spec linear_reg main
Code
linear_reg() %>% set_engine("quantreg") %>% tunable()
Output
# A tibble: 0 x 5
# i 5 variables: name <chr>, call_info <list>, source <chr>, component <chr>,
# component_id <chr>
Code
linear_reg() %>% set_engine("keras") %>% tunable()
Output
# A tibble: 1 x 5
name call_info source component component_id
<chr> <list> <chr> <chr> <chr>
1 penalty <named list [2]> model_spec linear_reg main
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.