Code
mlp(mode = "classification", hidden_units = 2) %>% set_engine("nnet", Hess = FALSE) %>%
update(hidden_units = tune(), Hess = tune())
Output
Single Layer Neural Network Model Specification (classification)
Main Arguments:
hidden_units = tune()
Engine-Specific Arguments:
Hess = tune()
Computational engine: nnet
Code
mlp(mode = "time series")
Condition
Error in `mlp()`:
! "time series" is not a known mode for model `mlp()`.
Code
translate(mlp(mode = "classification") %>% set_engine("wat?"))
Condition
Error in `set_engine()`:
x Engine "wat?" is not supported for `mlp()`
i See `show_engines("mlp")`.
Code
spec <- mlp(penalty = -1) %>% set_engine("keras") %>% set_mode("classification")
fit(spec, class ~ ., hpc)
Condition
Error in `fit()`:
! `penalty` must be a number larger than or equal to 0 or `NULL`, not the number -1.
Code
spec <- mlp(dropout = -1) %>% set_engine("keras") %>% set_mode("classification")
fit(spec, class ~ ., hpc)
Condition
Error in `fit()`:
! `dropout` must be a number between 0 and 1 or `NULL`, not the number -1.
Code
spec <- mlp(dropout = 1, penalty = 3) %>% set_engine("keras") %>% set_mode(
"classification")
fit(spec, class ~ ., hpc)
Condition
Error in `fit()`:
! Both weight decay and dropout should not be specified.
Code
mlp() %>% set_engine("brulee") %>% tunable()
Output
# A tibble: 12 x 5
name call_info source component component_id
<chr> <list> <chr> <chr> <chr>
1 epochs <named list [3]> model_spec mlp main
2 hidden_units <named list [3]> model_spec mlp main
3 activation <named list [3]> model_spec mlp main
4 penalty <named list [2]> model_spec mlp main
5 mixture <named list [2]> model_spec mlp engine
6 dropout <named list [2]> model_spec mlp main
7 learn_rate <named list [3]> model_spec mlp main
8 momentum <named list [3]> model_spec mlp engine
9 batch_size <named list [2]> model_spec mlp engine
10 class_weights <named list [2]> model_spec mlp engine
11 stop_iter <named list [2]> model_spec mlp engine
12 rate_schedule <named list [3]> model_spec mlp engine
Code
mlp() %>% set_engine("brulee_two_layer") %>% tunable()
Output
# A tibble: 14 x 5
name call_info source component component_id
<chr> <list> <chr> <chr> <chr>
1 epochs <named list [3]> model_spec mlp main
2 hidden_units <named list [3]> model_spec mlp main
3 hidden_units_2 <named list [3]> model_spec mlp engine
4 activation <named list [3]> model_spec mlp main
5 activation_2 <named list [3]> model_spec mlp engine
6 penalty <named list [2]> model_spec mlp main
7 mixture <named list [2]> model_spec mlp engine
8 dropout <named list [2]> model_spec mlp main
9 learn_rate <named list [3]> model_spec mlp main
10 momentum <named list [3]> model_spec mlp engine
11 batch_size <named list [2]> model_spec mlp engine
12 class_weights <named list [2]> model_spec mlp engine
13 stop_iter <named list [2]> model_spec mlp engine
14 rate_schedule <named list [3]> model_spec mlp engine
Code
mlp() %>% set_engine("nnet") %>% tunable()
Output
# A tibble: 3 x 5
name call_info source component component_id
<chr> <list> <chr> <chr> <chr>
1 hidden_units <named list [2]> model_spec mlp main
2 penalty <named list [2]> model_spec mlp main
3 epochs <named list [2]> model_spec mlp main
Code
mlp() %>% set_engine("keras") %>% tunable()
Output
# A tibble: 5 x 5
name call_info source component component_id
<chr> <list> <chr> <chr> <chr>
1 hidden_units <named list [2]> model_spec mlp main
2 penalty <named list [2]> model_spec mlp main
3 dropout <named list [2]> model_spec mlp main
4 epochs <named list [2]> model_spec mlp main
5 activation <named list [2]> model_spec mlp main
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.