Code
set_new_model()
Condition
Error in `set_new_model()`:
! `model` must be a single string, not absent.
Code
set_new_model(2)
Condition
Error in `set_new_model()`:
! `model` must be a single string, not the number 2.
Code
set_new_model(letters[1:2])
Condition
Error in `set_new_model()`:
! `model` must be a single string, not a character vector.
Code
get_from_env("modes")
Output
[1] "classification" "regression" "censored regression"
[4] "quantile regression" "unknown"
Code
set_model_mode("sponge")
Condition
Error in `set_model_mode()`:
! `mode` must be a single string, not absent.
Code
set_model_engine("sponge", eng = "gum")
Condition
Error in `set_model_engine()`:
! `mode` must be a single string, not absent.
Code
set_model_engine("sponge", mode = "classification")
Condition
Error in `set_model_engine()`:
! `eng` must be a single string, not absent.
Code
set_model_engine("sponge", mode = "regression", eng = "gum")
Condition
Error in `set_model_engine()`:
! "regression" is not a known mode for model `sponge()`.
Code
set_dependency("sponge", "gum", letters[1:2])
Condition
Error in `set_dependency()`:
! `pkg` must be a single string, not a character vector.
Code
set_dependency("sponge", "gummies", "trident")
Condition
Error in `set_dependency()`:
! The engine "gummies" has not been registered for model "sponge".
Code
set_dependency("sponge", "gum", "trident", mode = "regression")
Condition
Error in `set_dependency()`:
! mode "regression" is not a valid mode for "sponge".
Code
set_model_arg(model = "lunchroom", eng = "gum", parsnip = "modeling", original = "modelling",
func = list(pkg = "foo", fun = "bar"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! Model "lunchroom" has not been registered.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "modeling", func = list(
pkg = "foo", fun = "bar"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `original` must be a single string, not absent.
Code
set_model_arg(model = "sponge", eng = "gum", original = "modelling", func = list(
pkg = "foo", fun = "bar"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `parsnip` must be a single string, not absent.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling",
func = "foo::bar", has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling",
func = list(pkg = "foo", fun = "bar"), has_submodel = 2)
Condition
Error in `set_model_arg()`:
! `has_submodel` must be `TRUE` or `FALSE`, not the number 2.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "modeling", original = "modelling",
func = list(pkg = "foo", fun = "bar"))
Condition
Error in `set_model_arg()`:
! `has_submodel` must be `TRUE` or `FALSE`, not absent.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling",
func = c(foo = "a", bar = "b"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling",
func = c(foo = "a"), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
set_model_arg(model = "sponge", eng = "gum", parsnip = "yodeling", original = "yodelling",
func = c(fun = 2, pkg = 1), has_submodel = FALSE)
Condition
Error in `set_model_arg()`:
! The `fun` element of `func` must be a single string, not the number 2.
Code
set_fit(model = "cactus", eng = "gum", mode = "classification", value = fit_vals)
Condition
Error in `set_fit()`:
! Model "cactus" has not been registered.
Code
set_fit(model = "sponge", eng = "nose", mode = "classification", value = fit_vals)
Condition
Error in `set_fit()`:
! The combination of engine `nose` and mode `classification` has not been registered for model `sponge`.
Code
set_fit(model = "sponge", eng = "gum", mode = "frog", value = fit_vals)
Condition
Error in `set_fit()`:
! "frog" is not a known mode for model `sponge()`.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals[
-i])
Condition
Error in `set_fit()`:
! The `value` argument should have elements: defaults, func, interface, and protect.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals[
-i])
Condition
Error in `set_fit()`:
! The `value` argument should have elements: defaults, func, interface, and protect.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals[
-i])
Condition
Error in `set_fit()`:
! The `value` argument should have elements: defaults, func, interface, and protect.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals[
-i])
Condition
Error in `set_fit()`:
! The `value` argument should have elements: defaults, func, interface, and protect.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals_0)
Condition
Error in `check_interface_val()`:
! The interface element should have a single of: data.frame, formula, and matrix.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals_1)
Condition
Error in `set_fit()`:
! The defaults element should be a list.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals_2)
Condition
Error in `check_fit_info()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
set_fit(model = "sponge", eng = "gum", mode = "classification", value = fit_vals_3)
Condition
Error in `check_interface_val()`:
! The interface element should have a single of: data.frame, formula, and matrix.
Code
set_pred(model = "cactus", eng = "gum", mode = "classification", type = "class",
value = class_vals)
Condition
Error in `set_pred()`:
! Model "cactus" has not been registered.
Code
set_pred(model = "sponge", eng = "nose", mode = "classification", type = "class",
value = class_vals)
Condition
Error in `set_pred()`:
! The combination of engine `nose` and mode `classification` has not been registered for model `sponge`.
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "eggs",
value = class_vals)
Condition
Error in `set_pred()`:
! The prediction type should be one of: "raw", "numeric", "class", "prob", "conf_int", "pred_int", "quantile", "time", "survival", "linear_pred", and "hazard".
Code
set_pred(model = "sponge", eng = "gum", mode = "frog", type = "class", value = class_vals)
Condition
Error in `set_pred()`:
! "frog" is not a known mode for model `sponge()`.
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals[-i])
Condition
Error in `set_pred()`:
! The predict module should have elements: "args", "func", "post", and "pre".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals[-i])
Condition
Error in `set_pred()`:
! The predict module should have elements: "args", "func", "post", and "pre".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals[-i])
Condition
Error in `set_pred()`:
! The predict module should have elements: "args", "func", "post", and "pre".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals[-i])
Condition
Error in `set_pred()`:
! The predict module should have elements: "args", "func", "post", and "pre".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals_0)
Condition
Error in `set_pred()`:
! The `pre` element of `pred_obj` must be a function or `NULL`, not the string "I".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals_1)
Condition
Error in `set_pred()`:
! The `post` element of `pred_obj` must be a function or `NULL`, not the string "I".
Code
set_pred(model = "sponge", eng = "gum", mode = "classification", type = "class",
value = class_vals_2)
Condition
Error in `check_pred_info()`:
! `func` should be a named vector with element fun and the optional elements pkg, range, trans, and values. func and pkg should both be single character strings.
Code
show_model_info("rand_forest")
Output
Information for `rand_forest`
modes: unknown, classification, regression, censored regression
engines:
classification: randomForest, ranger1, spark
regression: randomForest, ranger1, spark
1The model can use case weights.
arguments:
ranger:
mtry --> mtry
trees --> num.trees
min_n --> min.node.size
randomForest:
mtry --> mtry
trees --> ntree
min_n --> nodesize
spark:
mtry --> feature_subset_strategy
trees --> num_trees
min_n --> min_instances_per_node
fit modules:
engine mode
ranger classification
ranger regression
randomForest classification
randomForest regression
spark classification
spark regression
prediction modules:
mode engine methods
classification randomForest class, prob, raw
classification ranger class, conf_int, prob, raw
classification spark class, prob
regression randomForest numeric, raw
regression ranger conf_int, numeric, raw
regression spark numeric
Code
show_model_info("mlp")
Output
Information for `mlp`
modes: unknown, classification, regression
engines:
classification: brulee, brulee_two_layer, keras, nnet
regression: brulee, brulee_two_layer, keras, nnet
arguments:
keras:
hidden_units --> hidden_units
penalty --> penalty
dropout --> dropout
epochs --> epochs
activation --> activation
nnet:
hidden_units --> size
penalty --> decay
epochs --> maxit
brulee:
hidden_units --> hidden_units
penalty --> penalty
epochs --> epochs
dropout --> dropout
learn_rate --> learn_rate
activation --> activation
brulee_two_layer:
hidden_units --> hidden_units
penalty --> penalty
epochs --> epochs
dropout --> dropout
learn_rate --> learn_rate
activation --> activation
fit modules:
engine mode
keras regression
keras classification
nnet regression
nnet classification
brulee regression
brulee classification
brulee_two_layer regression
brulee_two_layer classification
prediction modules:
mode engine methods
classification brulee class, prob
classification brulee_two_layer class, prob
classification keras class, prob, raw
classification nnet class, prob, raw
regression brulee numeric
regression brulee_two_layer numeric
regression keras numeric, raw
regression nnet numeric, raw
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.