Code
svm_linear(mode = "regression", cost = 2) %>% set_engine("kernlab", cross = 10) %>%
update(cross = tune(), cost = tune())
Output
Linear Support Vector Machine Model Specification (regression)
Main Arguments:
cost = tune()
Engine-Specific Arguments:
cross = tune()
Computational engine: kernlab
Code
translate(svm_linear(mode = "regression") %>% set_engine(NULL))
Condition
Error in `set_engine()`:
! Missing engine. Possible mode/engine combinations are: classification {LiblineaR, kernlab} and regression {LiblineaR, kernlab}.
Code
svm_linear(mode = "reallyunknown")
Condition
Error in `svm_linear()`:
! "reallyunknown" is not a known mode for model `svm_linear()`.
Code
translate(svm_linear(mode = "regression") %>% set_engine("LiblineaR", type = 3))
Condition
Error in `translate()`:
! The LiblineaR engine argument `type = 3` does not correspond to an SVM regression model.
Code
translate(svm_linear(mode = "classification") %>% set_engine("LiblineaR", type = 11))
Condition
Error in `translate()`:
! The LiblineaR engine argument of `type = 11` does not correspond to an SVM classification model.
Code
predict(cls_form, hpc_no_m[ind, -5], type = "prob")
Condition
Error in `predict()`:
! No "prob" prediction method available for this model. `type` should be one of: "class" and "raw".
Code
predict(cls_xy_form, hpc_no_m[ind, -5], type = "prob")
Condition
Error in `predict()`:
! No "prob" prediction method available for this model. `type` should be one of: "class" and "raw".
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.