test_that("Logistic apply works - data.frame", {
sl_logistic <- cal_estimate_logistic(segment_logistic, Class, smooth = FALSE)
ap_logistic <- cal_apply(segment_logistic, sl_logistic)
pred_good <- ap_logistic$.pred_good
expect_equal(mean(pred_good), 0.3425743, tolerance = 0.000001)
expect_equal(sd(pred_good), 0.2993934, tolerance = 0.000001)
})
test_that("Logistic apply works - tune_results", {
skip_if_not_installed("modeldata")
tct <- testthat_cal_binary()
tl_logistic <- cal_estimate_logistic(tct, smooth = FALSE)
tap_logistic <- cal_apply(tct, tl_logistic)
expect_equal(
testthat_cal_binary_count(),
nrow(tap_logistic)
)
})
test_that("Logistic spline apply works", {
sl_gam <- cal_estimate_logistic(segment_logistic, Class)
ap_gam <- cal_apply(segment_logistic, sl_gam)
pred_good <- ap_gam$.pred_good
expect_equal(mean(pred_good), 0.3425743, tolerance = 0.000001)
expect_equal(sd(pred_good), 0.2987027, tolerance = 0.000001)
})
test_that("Logistic spline apply works - tune_results", {
skip_if_not_installed("modeldata")
tct <- testthat_cal_binary()
tl_gam <- cal_estimate_logistic(tct)
tap_gam <- cal_apply(tct, tl_gam)
expect_equal(
testthat_cal_binary_count(),
nrow(tap_gam)
)
})
# ------------------------------------------------------------------------------
test_that("Linear apply works - data.frame", {
sl_linear <- cal_estimate_linear(boosting_predictions_oob, outcome, smooth = FALSE)
ap_linear <- cal_apply(boosting_predictions_oob, sl_linear)
pred <- ap_linear$.pred
expect_equal(mean(pred), 14.87123, tolerance = 0.000001)
expect_equal(sd(pred), 14.94483, tolerance = 0.000001)
})
test_that("Linear apply works - tune_results", {
tct <- testthat_cal_reg()
tl_linear <- cal_estimate_linear(tct, smooth = FALSE)
tap_linear <- cal_apply(tct, tl_linear)
expect_equal(
testthat_cal_reg_count(),
nrow(tap_linear)
)
})
test_that("Linear spline apply works", {
sl_gam <- cal_estimate_linear(boosting_predictions_oob, outcome)
ap_gam <- cal_apply(boosting_predictions_oob, sl_gam)
pred <- ap_gam$.pred
expect_equal(mean(pred), 14.87123, tolerance = 0.000001)
expect_equal(sd(pred), 15.00711, tolerance = 0.000001)
})
test_that("Linear spline apply works - tune_results", {
tct <- testthat_cal_reg()
tl_gam <- cal_estimate_linear(tct)
tap_gam <- cal_apply(tct, tl_gam)
expect_equal(
testthat_cal_reg_count(),
nrow(tap_gam)
)
})
# ------------------------------------------------------------------------------
test_that("Isotonic apply works - data.frame", {
set.seed(100)
sl_isotonic <- cal_estimate_isotonic(segment_logistic, Class)
ap_isotonic <- cal_apply(segment_logistic, sl_isotonic)
pred_good <- ap_isotonic$.pred_good
expect_equal(mean(pred_good), 0.2839132, tolerance = 0.000001)
expect_equal(sd(pred_good), 0.3079697, tolerance = 0.000001)
})
test_that("Isotonic apply works - tune_results", {
skip_if_not_installed("modeldata")
tct <- testthat_cal_binary()
tl_isotonic <- cal_estimate_isotonic(tct)
tap_isotonic <- cal_apply(tct, tl_isotonic)
expect_equal(
testthat_cal_binary_count(),
nrow(tap_isotonic)
)
})
test_that("Isotonic Bootstrapped apply works - data.frame", {
sl_boot <- cal_estimate_isotonic_boot(segment_logistic, Class)
ap_boot <- cal_apply(segment_logistic, sl_boot)
expect_true(all(ap_boot$.pred_poor + ap_boot$.pred_good == 1))
})
test_that("Isotonic Bootstrapped apply works - tune_results", {
skip_if_not_installed("modeldata")
tct <- testthat_cal_binary()
tl_boot <- cal_estimate_isotonic_boot(tct)
tap_boot <- cal_apply(tct, tl_boot)
expect_equal(
testthat_cal_binary_count(),
nrow(tap_boot)
)
})
# ------------------------------------------------------------------------------
test_that("Beta apply works - data.frame", {
skip_if_not_installed("betacal")
sl_beta <- cal_estimate_beta(segment_logistic, Class)
ap_beta <- cal_apply(segment_logistic, sl_beta)
pred_good <- ap_beta$.pred_good
expect_equal(mean(pred_good), 0.3425743, tolerance = 0.000001)
expect_equal(sd(pred_good), 0.294565, tolerance = 0.000001)
})
test_that("Beta apply works - tune_results", {
skip_if_not_installed("betacal")
skip_if_not_installed("modeldata")
tct <- testthat_cal_binary()
tl_beta <- cal_estimate_beta(tct)
tap_beta <- cal_apply(tct, tl_beta)
expect_equal(
testthat_cal_binary_count(),
nrow(tap_beta)
)
})
# ------------------------------------------------------------------------------
test_that("Passing the data frame first returns expected abort message", {
sl_boot <- cal_estimate_isotonic_boot(segment_logistic, Class)
expect_error(
cal_apply(sl_boot, segment_logistic)
)
})
test_that("Passing a tune_results without saved predictions causes error", {
skip_if_not_installed("betacal")
skip_if_not_installed("modeldata")
tct <- testthat_cal_binary()
tl_beta <- cal_estimate_beta(tct)
expect_error(cal_apply(tune::ames_grid_search, tl_beta))
})
test_that("Passing a calibration object as the first arg fails", {
skip_if_not_installed("betacal")
sl_beta <- cal_estimate_beta(segment_logistic, Class)
expect_error(cal_apply(sl_beta, segment_logistic))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.