Code
prep(rec, training = dat)
Condition
Error in `step_classdist()`:
Caused by error in `bake()`:
! Name collision occurred. The following variable names already exist:
* `classdist_setosa`
Code
recipes:::get_center(mtcars, wts = wts, mfun = median)
Condition
Error in `recipes:::get_center()`:
! The centering function requested cannot be used with case weights.
Code
recipes:::get_both(mtcars, wts = wts, mfun = median)
Condition
Error in `recipes:::get_both()`:
! The centering function requested cannot be used with case weights.
Code
recipes:::get_both(mtcars, wts = wts, cfun = mad)
Condition
Error in `recipes:::get_both()`:
! The variance function requested cannot be used with case weights.
Code
rec_prep
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 4
case_weights: 1
-- Training information
Training data contained 150 data points and no incomplete rows.
-- Operations
* Distances to Species for: Sepal.Length, ... | Trained, weighted
Code
bake(trained, new_data = iris[, c(-3)])
Condition
Error in `step_classdist()`:
! The following required column is missing from `new_data`: Petal.Length.
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 4
-- Operations
* Distances to Species for: <none>
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 4
-- Training information
Training data contained 150 data points and no incomplete rows.
-- Operations
* Distances to Species for: <none> | Trained
Code
rec <- prep(rec)
Condition
Warning:
`keep_original_cols` was added to `step_classdist()` after this recipe was created.
i Regenerate your recipe to avoid this warning.
Code
print(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 4
-- Operations
* Distances to Species for: all_predictors()
Code
prep(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 4
-- Training information
Training data contained 150 data points and no incomplete rows.
-- Operations
* Distances to Species for: Sepal.Length and Sepal.Width, ... | Trained
Code
recipe(Species ~ ., data = iris) %>% step_classdist(all_predictors(), class = "Species",
mean_func = 2) %>% prep()
Condition
Error in `step_classdist()`:
Caused by error in `prep()`:
! `x$mean_func` must be a function, not the number 2.
Code
recipe(Species ~ ., data = iris) %>% step_classdist(all_predictors(), class = "Species",
cov_func = NULL) %>% prep()
Condition
Error in `step_classdist()`:
Caused by error in `prep()`:
! `x$cov_func` must be a function, not `NULL`.
Code
recipe(Species ~ ., data = iris) %>% step_classdist(all_predictors(), class = "Species",
prefix = NULL) %>% prep()
Condition
Error in `step_classdist()`:
Caused by error in `prep()`:
! `x$prefix` must be a single string, not `NULL`.
Code
recipe(Species ~ ., data = iris) %>% step_classdist(all_predictors(), class = "Species",
pool = NULL) %>% prep()
Condition
Error in `step_classdist()`:
Caused by error in `prep()`:
! `x$pool` must be `TRUE` or `FALSE`, not `NULL`.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.