Code
recipe(~medium, data = tate_text) %>% step_dummy_extract(medium) %>% prep()
Condition
Error in `step_dummy_extract()`:
Caused by error in `prep()`:
! `sep` or `pattern` must be specified.
Code
prep(rec, training = dat)
Condition
Error in `step_dummy_extract()`:
Caused by error in `bake()`:
! Name collision occurred. The following variable names already exist:
* `Species_setosa`
Code
dummy_prepped
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 1
case_weights: 1
-- Training information
Training data contained 4 data points and no incomplete rows.
-- Operations
* Extract patterns from: medium | Trained, weighted
Code
dummy_prepped
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 1
case_weights: 1
-- Training information
Training data contained 4 data points and no incomplete rows.
-- Operations
* Extract patterns from: medium | Trained, ignored weights
Code
bake(dummy_prepped, new_data = mini_tate[, 1:3])
Condition
Error in `step_dummy_extract()`:
! The following required column is missing from `new_data`: medium.
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Operations
* Extract patterns from: <none>
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Training information
Training data contained 32 data points and no incomplete rows.
-- Operations
* Extract patterns from: <none> | Trained
Code
rec <- prep(rec)
Condition
Warning:
`keep_original_cols` was added to `step_dummy_extract()` after this recipe was created.
i Regenerate your recipe to avoid this warning.
Code
print(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 1
-- Operations
* Extract patterns from: all_predictors()
Code
prep(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 1
-- Training information
Training data contained 4284 data points and no incomplete rows.
-- Operations
* Extract patterns from: medium | Trained
Code
recipe(~colors, data = color_examples) %>% step_dummy_extract(colors, pattern = "(?<=')[^',]+(?=')",
other = 2) %>% prep()
Condition
Error in `step_dummy_extract()`:
Caused by error in `prep()`:
! `other` must be a single string or `NULL`, not the number 2.
Code
recipe(~colors, data = color_examples) %>% step_dummy_extract(colors, pattern = "(?<=')[^',]+(?=')",
other = 2) %>% prep()
Condition
Error in `step_dummy_extract()`:
Caused by error in `prep()`:
! `other` must be a single string or `NULL`, not the number 2.
Code
recipe(~colors, data = color_examples) %>% step_dummy_extract(colors, pattern = "(?<=')[^',]+(?=')",
sep = 2) %>% prep()
Condition
Error in `step_dummy_extract()`:
Caused by error in `prep()`:
! `sep` must be a single string or `NULL`, not the number 2.
Code
recipe(~colors, data = color_examples) %>% step_dummy_extract(colors, pattern = 2) %>%
prep()
Condition
Error in `step_dummy_extract()`:
Caused by error in `prep()`:
! `pattern` must be a single string or `NULL`, not the number 2.
Code
recipe(~colors, data = color_examples) %>% step_dummy_extract(colors, pattern = "(?<=')[^',]+(?=')",
naming = NULL) %>% prep()
Condition
Error in `step_dummy_extract()`:
Caused by error in `prep()`:
! `naming` must be a function, not `NULL`.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.