Code
recipe(tg_dat) %>% step_impute_linear(supp, impute_with = c("len")) %>% prep(
tg_dat)
Condition
Error in `step_impute_linear()`:
Caused by error in `prep()`:
! Variable `supp` chosen for linear regression imputation must be of type numeric. Not a string.
Code
recipe(tg_dat) %>% step_impute_linear(supp, dose, impute_with = c("len")) %>%
prep(tg_dat)
Condition
Error in `step_impute_linear()`:
Caused by error in `prep()`:
! Variable `supp` chosen for linear regression imputation must be of type numeric. Not a string.
Code
rec_prepped
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
case_weights: 1
undeclared role: 2
-- Training information
Training data contained 2930 data points and 556 incomplete rows.
-- Operations
* Linear regression imputation for: Lot_Frontage | Trained, weighted
Code
rec_prepped
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
case_weights: 1
undeclared role: 2
-- Training information
Training data contained 2930 data points and 556 incomplete rows.
-- Operations
* Linear regression imputation for: Lot_Frontage | Trained, ignored weights
Code
recipe(~., data = mtcars) %>% step_impute_linear(all_predictors(), impute_with = NULL) %>%
prep()
Condition
Error in `step_impute_linear()`:
! `impute_with` must not be empty.
Code
tmp <- recipe(~., data = mtcars) %>% step_impute_linear(mpg, impute_with = imp_vars(
disp)) %>% prep()
Condition
Warning:
There were missing values in the predictor(s) used to impute; imputation did not occur.
Code
recipe(~., data = mtcars) %>% step_impute_linear(all_predictors()) %>% prep()
Condition
Error in `step_impute_linear()`:
Caused by error in `prep()`:
! The data did not have any rows where the imputation values were all complete. Is is thus unable to fit the linear regression model.
Code
bake(rec, new_data = ames_dat[, 2:3])
Condition
Error in `step_impute_linear()`:
! The following required column is missing from `new_data`: Lot_Frontage.
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Operations
* Linear regression imputation for: <none>
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Training information
Training data contained 32 data points and no incomplete rows.
-- Operations
* Linear regression imputation for: <none> | Trained
Code
print(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
undeclared role: 3
-- Operations
* Linear regression imputation for: Lot_Frontage
Code
prep(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
undeclared role: 3
-- Training information
Training data contained 2930 data points and 556 incomplete rows.
-- Operations
* Linear regression imputation for: Lot_Frontage | Trained
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.