Code
recipe(~., data = example_data) %>% step_impute_roll(all_predictors(), window = 3) %>%
prep(training = example_data)
Condition
Error in `step_impute_roll()`:
Caused by error in `prep()`:
x All columns selected for the step should be double.
* 1 date variable found: `day`
Code
recipe(~., data = example_data) %>% update_role(day, new_role = "time_index") %>%
step_impute_roll(all_predictors(), window = 4) %>% prep(training = example_data)
Condition
Error in `step_impute_roll()`:
Caused by error in `prep()`:
! `window` should be an odd integer >= 3.
Code
recipe(~., data = example_data) %>% update_role(day, new_role = "time_index") %>%
step_impute_roll(all_predictors(), window = 3) %>% prep(training = example_data)
Condition
Error in `step_impute_roll()`:
Caused by error in `prep()`:
x All columns selected for the step should be double.
* 1 integer variable found: `x4`
Code
recipe(~., data = mtcars) %>% step_impute_roll(all_predictors(), statistic = mean,
window = 1) %>% prep()
Condition
Error in `step_impute_roll()`:
Caused by error in `prep()`:
! `window` must be a whole number larger than or equal to 3, not the number 1.
Code
recipe(~., data = mtcars) %>% step_impute_roll(all_predictors(), statistic = mean,
window = 4) %>% prep()
Condition
Error in `step_impute_roll()`:
Caused by error in `prep()`:
! `window` should be an odd integer >= 3.
Code
recipe(~., data = mtcars) %>% step_impute_roll(all_predictors(), statistic = NULL) %>%
prep()
Condition
Error in `step_impute_roll()`:
Caused by error in `prep()`:
! `statistic` must be a function, not `NULL`.
Code
bake(seven_pt, new_data = example_data[, c(-2)])
Condition
Error in `step_impute_roll()`:
! The following required column is missing from `new_data`: x1.
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Operations
* Rolling imputation for: <none>
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Training information
Training data contained 32 data points and no incomplete rows.
-- Operations
* Rolling imputation for: <none> | Trained
Code
print(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 3
time_index: 1
-- Operations
* Rolling imputation for: all_predictors()
Code
prep(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
predictor: 3
time_index: 1
-- Training information
Training data contained 12 data points and 7 incomplete rows.
-- Operations
* Rolling imputation for: x1, x2, x3 | Trained
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.